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1 Introduction

Among the different subsets of local composite operators in planar N = 4 SYM, the sl(2)

twist sector has been very much studied under different perspectives and by various means.

Under planar limit, i.e. number of colours N → ∞ and SYM coupling gY M → 0, so that

the ‘t Hooft coupling

λ = g2
Y MN = 8π2g2 (1.1)

stays finite, it is made up of local composite operators with the form

Tr
(

DsZL
)

+ . . . , (1.2)

where D is the covariant derivative acting in all the possible ways on the L complex bosonic

fields Z. The Lorentz spin of these operators is s and L is the R-charge which coincides

with the twist (classical dimension minus the spin). Moreover, this sector is described

— thanks to the AdS/CFT correspondence [1] — by spinning folded closed strings on
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AdS5 × S5 spacetime with AdS5 and S5 angular momenta s and L, respectively [2, 3]. In

addition, as far as the one loop is concerned, the Bethe Ansatz problem is equivalent to

that of twist operators in QCD [4, 5]; and this partially justifies the great interest in the

sector (1.2).

As being in a conformal model, suitable superpositions of operators form dilatation

operator eigenvectors with definite dimensions (eigenvalues), which are made up of a clas-

sical part plus an anomalous one. For instance, in the topical sector of operators (1.2) this

spectral problem shows up dimensions

∆(g, s, L) = L + s + γ(g, s, L) , (1.3)

where γ(g, s, L) is the anomalous part. According to the AdS/CFT strong/weak coupling

duality, the set of anomalous dimensions of composite operators in N = 4 SYM coincides

with the energy spectrum of the AdS5 × S5 string theory ([1–3] and references therein),

although the perturbative regimes are interchanged. The highly nontrivial problem of

evaluating the anomalous part in N = 4 SYM was greatly simplified by the discovery of

integrability in the purely bosonic so(6) sector at one loop [6]. Later on, this fact has

been extended to all the gauge theory sectors and at all loops in a way which shows up

integrability in a weaker sense, but still furnishes the investigators many powerful tools [7].

More in detail, any operator (e.g. of the form (1.2)) has been thought of as a state of a

’spin chain’, whose hamiltonian is, of course, the dilatation operator itself, although the

latter does not have an explicit expression of the spin chain form, but for the first few

loops. Nevertheless, the large size (asymptotic) spectrum has turned out to be exactly

described by certain Bethe Ansatz-like equations (the so-called Beisert-Staudacher equa-

tions, cf. [7, 8] and references therein). In other words, the anomalous dimensions coincide

with the energies given by the Bethe Ansatz solutions (or roots): this is, of course, a great

simplification of the initial spectral problem.

Unfortunately, this is only part of the full story, albeit the rest should not worry us

in the present context. In fact, an important limitation emerges as a consequence of the

asymptotic character of the Bethe Ansatz: the latter ought to be modified by wrapping

effects as soon as the (site-to-site) interaction range in the loop expansion of the dilatation

operator becomes greater than the chain length. In other words, the anomalous dimension

given by the asymptotic Bethe Ansatz is in general correct only up to L − 1 loops in the

(SYM) convergent perturbative expansion, i.e. up to the order g2L−2. This implies that

the asymptotic Bethe Ansatz should give the right result whenever the limit (1.4) below is

applied and the leading contribution (1.5) considered.

Therefore, let us consider the following large twist and high spin (double scaling) limit

s → ∞ , L → ∞ , j =
L

ln s
= fixed , (1.4)

in the asymptotic Bethe Ansatz equations describing the sl(2) sector (1.2). Incidentally,

we shall stress how the dual string theory inherits a crucial difference since its semiclas-

sical expansion employs the string tension
√

λ → +∞ as inverse Planck’s constant. This

means that this limit need to be considered before the scaling (1.4) (cf. for instance [9]
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and references therein), thus imposing, at least, a different limit order with respect to our

gauge theory approach: often, instead of j, the scaling string variable ℓ ∼ j/
√

λ stays

naturally fixed (cf. below for more details). The relevance of this double limit has been

suggested in first instance by [10] within the (one-loop) SYM theory and then motivated

in [9] and in [11] within the string theory dual (see also [2, 3]). In fact, calculations of the

latter authors pointed towards the following generalisation (at all loops) for the anomalous

dimension formula found in [10]

γ(g, s, L) = f(g, j) ln s + . . . . (1.5)

Moreover, by describing the Bethe Ansatz energy through a non-linear integral equation

(like in other integrable theories [12]), this Sudakov scaling has been remarkably confirmed

in [13]. There this statement was argued by computing iteratively the solution of a (inhomo-

geneous) linear integral equation (Neumann expansion) and then, thereof, the generalised

scaling function, f(g, j) at the first orders in j and g2: more precisely the first orders in g2

have been computed for the first generalised scaling functions fn(g), forming the crucial

expansion (see below for the motivation)

f(g, j) =

∞
∑

n=0

fn(g)jn . (1.6)

As a by-product, the reasonable conjecture has been put forward that the two-variable

function f(g, j) should be bi-analytic around zero (in g for fixed j and in j for fixed g).

Of course, a reliable test of the AdS/CFT correspondence requires the knowledge of the

fn(g) also for large values of the coupling g, as a consequence of the semiclassical nature

of string expansion. This fact has been recently experienced in a particular, but peculiar

case, namely the (large g) asymptotic expansion of f0(g) = f(g) and the comparison with

string theory results ([9, 14–17] and references therein).

In this context, in paper [18] we have studied the large s limit at finite L, showing how

to obtain the contributions beyond the leading scaling function f(g), by means of one linear

integral equation, which does not differ from the so-called BES equation (which covers the

case j = 0, cf. the second one of [8]), but for the inhomogeneous term. In this respect, our

approach was different with respect to that of [13], as the latter needs to take into account

also non-linear terms in the integral equation and anomalous dimension expression (cf. also

below for other details).

Albeit important in itself, this first step is also important for the study of the large

L limit (1.4), which is indeed the main aim of the present systematic study. Actually, a

suitable modification of the LIE of [18] has been already exploited and explored in [19] to

derive, in the scaling (1.4), still a LIE, namely (2.11) below. This equation yields the same

leading scaling function f(g, j) (of the expansion (1.5)) as the LIE in [13]. Yet, we will argue

in the next section how our LIE should also predict the form of the dots in (1.5). More

precisely, we would expect a O((ln s)0) (j-dependent) correction to the leading Sudakov

scaling, i.e.

γ(g, s, L) = f(g, j) ln s + f (0)(g, j) + . . . . (1.7)
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Furthermore, the same linear integral equation (2.11) still controls this next-to-leading

order (nlo), f (0)(g, j). Now, similarly, we may imagine that the dots should initially be

inverse integer powers of ln s, with coefficients, at each power, depending on g and j.

Afterwards, inverse integer powers of s should also enter the stage, but they are determined

by the complete non-linear integral equation (NLIE) of [18].1 However, in this paper we

will constrain ourselves to the leading Sudakov factor f(g, j), leaving the analysis of its

corrections for future publications.

Actually, in [19] we have initiated the study of the strong coupling regime of the first

generalised scaling function f1(g) and have shown the proportionality of its leading order

to the mass gap m(g) (see (3.13) below) of the O(6) nonlinear sigma model (NLSM). This

gives a first positive test, in the strong coupling regime j ≪ m(g) of the NLSM, for the

Alday-Maldacena proposal [11]. This claims that as long as g ≫ j the quantity f(g, j) + j

should coincide with the O(6) NLSM energy density. The latter was expanded and checked

for the first orders in the perturbative regime j ≫ m(g) of the NLSM by [11]. Hence, our

test was a first indication in another valuable region of the NLSM, i.e. j ≪ m(g), where the

free energy series is, besides, convergent [22]. Afterwards, the embedding of the O(6) NLSM

into N = 4 SYM at large g was brilliantly shown in a formal way by [20], where the leading

strong coupling contribution of f3(g) was computed too. In a contemporaneous paper [21],

starting from the our linear integral equation [19], we have set down the initial ideas for a

systematic study of all the fn(g) and confined our study to the first four f1(g), f2(g), f3(g)

and f4(g), by finding for them some analytic relations and expressions. These have been

then evaluated numerically with additional analytic results for large g, finding agreement

with the suitable results from the O(6) NLSM [22]. Furthermore, the agreement on f4(g) is

highly nontrivial, since it contains the details of the specific interaction in the O(6) NLSM.

For completeness sake, all these results will be reported in the following as well.

In the present paper we want to present a systematic approach to the computation

of all the generalised scaling functions fn(g) and, consequently, of f(g, j) according to the

expansion about j = 0 (1.6). In section 2 we will write a linear integral equation for the

(higher loop) root/hole density which describes the anomalous dimension via a linear in-

tegral in the limit (1.4). Then, the problem of computing the generalised scaling function

f(g, j) (1.5) will be achieved by expanding the density around j = 0, analogously to (1.6).

The n-th coefficient (n-th ’density’) of this expansion gives the n-th generalised scaling

function fn(g) via a Kotikov-Lipatov-like [23] formula (2.17) and satisfies an integral equa-

tion (of Fredholm type) whose inhomogeneous term involves specific values of the m-th

densities with m ≤ n − 3: this fact clearly permits a recursive solution. In section 3 the

general n-th integral equation will be re-written as a linear system for an infinite dimen-

sional vector, whose first component is simply proportional to fn(g). In section 3 we will

make the recursive procedure more explicit and write down systematically the solution

of the n-th system in terms of the solutions of simpler systems2 and of the values of the

root/hole density and its derivatives in zero. In section 5 we study extensively the strong

1These are also corrected by wrapping effects.
2Because of their ’simplicity’, which expresses itself mainly through the possibility of writing their

solution in terms of the BES solution [8, 15], we will call them ’reduced’ systems.
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coupling limit, g → +∞. First, we write down the asymptotic (power-like) expressions

for the root/hole density and its derivatives. Then, we set down a recursive method for

computing the non-analytic correction to them and to the various scaling functions fn(g).

As an example we make this procedure explicit for the first cases f3(g), . . . , f8(g) (subsec-

tion 5.1) and then show that these all tend to their O(6) nonlinear sigma model (NLSM)

prediction (given in terms of the mass-gap). Finally, a quantitative discussion on the cor-

rection to this limit is presented (subsection 5.2). Some perspectives and conclusions are

presented in section 6.

2 High spin equations

In the framework of integrability in N = 4 SYM, it was useful [24] to rewrite the Bethe

equations as non-linear integral equations [12]. In particular, this approach was pursued

for the sl(2) sector of the theory (see [13, 18]), since it allows to evaluate in a rigorous way

all the subleading terms in the high spin expansion. In fact, as long as the leading O(ln s)

term is under investigation, a simpler derivation of the relevant linear equations based on

the density of roots can be used: this was the way followed in the seminal papers on the ES

and BES equations (first and second of [8], respectively). Nevertheless, once the subsequent

ln s orders enter the stage — as for the generalised scaling function f(g, j) —, it is unclear

to which extent a linear equation for the density may be correctly derived. Actually, this is

part of the aims of the non-linear integral equation method, namely to reproduce (rigorously

the solution to) the density equation as leading large volume contribution, by taking under

control the non-linear terms [12]. In this spirit, [13] has improved the analysis in [8] by

evaluating at which order the non-linear terms would have contributed; as a consequence, a

linear integral equation describing f(g, j) has been derived. However, we will start from the

non-linear integral equation derived in [18], since non-linearity starts contributing at larger

order (O
(

(ln s)−1
)

, see discussion after equation (2.12)), thus making possible the study

of the first subleading correction in future studies. Of course, for the further corrections

the full non-linear integral equation will be crucial.

In the sl(2) sector states of twist L are described by s Bethe roots, which localize in

an interval [−b, b] of the real line, and L ’holes’ [8, 10, 13, 18]. For any state, two holes lie

outside the interval [−b, b] and the remaining L − 2 holes lie inside this interval. For the

lowest anomalous dimension state (ground state) — which is the state we are interested in

— the (L−2) internal holes localise in the interval [−c, c], c < b, and in this interval no roots

are present.3 The non-linear integral equation for states of the sl(2) sector involves two

functions F (u) and G(u, v) satisfying linear integral equations [18]. It is convenient to split

F (u) into its one-loop F0(u) and higher than one loop FH(u) contributions and to define

the functions σH(u) = d
duFH(u) and σ0(u) = d

duF0(u). In the limit (1.4) (i.e. L → +∞
with j fixed) these functions (depend on j and) acquire the meaning of, respectively, higher

than one loop and one loop density of both Bethe roots and holes. At the leading order

O(ln s) they satisfy linear integral equations below (2.5), (2.11), respectively.

3The existence of a ’separator’, c, between roots and holes is a non-obvious and technically

important issue.
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Regarding the ground state, in the scaling (1.4) the densities determine the anomalous

dimension in a simple form,4

γ(g, s, L) = −g2

∫ b0

−b0

dv

2π

[

i

x+(v)
− i

x−(v)

]

σ0(v) (2.1)

+g2

∫ +∞

−∞

dv

2π
χc(v)

[

i

x+(v)
− i

x−(v)

]

[σ0(v) + σH(v)]

−g2

∫ +∞

−∞

dv

2π

[

i

x+(v)
− i

x−(v)

]

σH(v) + O
(

(ln s)−1
)

,

where we introduced the function χc(u) which equals 1 if −c ≤ u ≤ c, where the internal

holes concentrate, and 0 otherwise. This means that, as far as the computation of the

generalised scaling functions is concerned, one can rely on (2.2). The terms depending on

σ0(u) get more manageable after using the important relation

∫ b0

−b0

dvf(v)σ0(v) =

∫ +∞

−∞
dvf(v)σs

0(v) + O
(

(ln s)−1
)

, (2.2)

where the Fourier transform of the function σs
0(v) satisfies the integral equation,

σ̂s
0(k) = −4π

L
2 − e−

|k|
2 cos ks√

2

2 sinh |k|
2

− e−
|k|
2

2 sinh |k|
2

∫ +∞

−∞
du eikuχc0(u)σs

0(u) − 4πδ(k) ln 2 , (2.3)

with the parameter c0 such that the normalization condition5

∫ +∞

−∞
duχc0(u)σs

0(u) = −2π(L − 2) + O
(

(ln s)−1
)

(2.4)

holds. Formula (2.2) was introduced in [18] (it is formula (3.52) there), upon taking

inspiration from analogous simplifications used in the ES paper (first reference of [8]),

though for the more than one loop density. In the double limit (1.4), i.e. considering j

fixed, the above j-depending remainders are O
(

(ln s)−1
)

and are given by non-linear terms

we neglected when writing previous equations. This means that the linearity of equations

extends also to the subsequent order O
(

(ln s)0
)

, and thus eventually to f (0)(g, j) of (1.7):

this case will be object of future investigations and publications. In this paper we will

constrain ourselves to the leading order O(ln s). Therefore, we can neglect the δ-term

in (2.3) and we are left with the following equations, describing the one loop theory:

σ̂s
0(k) =−4π

L
2 −e−

|k|
2 cos ks√

2

2 sinh |k|
2

− e−
|k|
2

sinh |k|
2

∫ +∞

−∞

dh

2π
σ̂s

0(h)
sin(k−h)c0

k−h
, (2.5)

2

∫ +∞

−∞

dk

2π
σ̂s

0(k)
sin kc0

k
= −2π(L−2) . (2.6)

4The parameter b0 > c is the one loop contribution to b: therefore, it depends on s through the solution

of the linear equation for F0(u) (see [18]).
5The physical meaning of (2.4) is that, for −c0 ≤ u ≤ c0, σs

0(u) approximates the density of holes, that

in the one loop theory fill the interval [−c0, c0], where no roots are present.
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These relations have to be solved together and give, for any values of L, c0 and σ̂s
0(k) at

the leading order O(ln s). In the limit (1.4) σs
0(u) and c0 expand as,

σs
0(u) =

[ ∞
∑

n=0

σs
0
(n)(u)jn

]

ln s + . . . , c0 =

∞
∑

n=1

c
(n)
0 jn + . . . , (2.7)

where dots stand for subleading corrections, and it is not difficult to give, see for in-

stance [21], the values of the first two coefficients of the expansion of c0:

c
(1)
0 =

π

4
, c

(2)
0 = −π

4
ln 2 . (2.8)

In order to study the higher than one loop density in the limit (1.4), we start from

(4.10) of [18]. We remove the third, the fourth, the fifth, the seventh and the eighth

term in the right hand side of that equation, since they are all O(1/s). Moreover, using

the localization [8] of the higher than one loop density, in all the integrations involving
d
dvFH(v) = σH(v) + O(1/s) we replace the extremes ±b with ±∞. On the other hand,

in the integrations involving d
dvF0(v) = σ0(v) + O(1/s) we can replace b with b0 and then

use (2.2). Finally, we replace the sums over internal holes with integrals involving the den-

sity. After doing all these manipulations, we obtain that the higher than one loop density

satisfies the linear integral equation,6 at the leading order O(ln s),

σH(u) = −iL
d

du
ln





1 + g2

2x−(u)2

1 + g2

2x+(u)2



+
i

π

∫ +∞

−∞
dvχc(v)





d

du
ln





1 − g2

2x+(u)x−(v)

1 − g2

2x−(u)x+(v)



 (2.9)

+i
d

du
θ(u, v) + i

1

1 + (u − v)2

]

[σs
0(v) + σH(v)]

− i

π

∫ +∞

−∞
dv

d

du



ln





1 − g2

2x+(u)x−(v)

1 − g2

2x−(u)x+(v)



+ iθ(u, v)



 σs
0(v)

+

∫ +∞

−∞

dv

π

1

1 + (u − v)2
σH(v) +

∫ +∞

−∞

dv

π
χc0(v)

1

1 + (u − v)2
σs

0(v)

− i

π

∫ +∞

−∞
dv

d

du



ln





1 − g2

2x+(u)x−(v)

1 − g2

2x−(u)x+(v)



+ iθ(u, v)



 σH(v) ,

which has to be solved knowing (2.5) and together with the conditions,

∫ +∞

−∞
duχc(u) [σs

0(u) + σH(u)] = −2π(L − 2) , (2.10)

∫ +∞

−∞
duχc0(u)σs

0(u) = −2π(L − 2) .

6The quantity θ(u, v) appearing in (2.9) is the well known dressing factor. For related notations, we

refer to the second reference of [8].
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As in the one loop case, it is convenient to rewrite, in terms of Fourier transforms,

equation (2.9),

σ̂H(k) = πL
1 − J0

(√
2gk
)

sinh |k|
2

(2.11)

+
1

sinh |k|
2

∫ +∞

−∞

dh

|h|

[ ∞
∑

r=1

r(−1)r+1Jr

(√
2gk
)

Jr

(√
2gh
) 1−sgn(kh)

2
e−

|h|
2

+ sgn(h)
∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)(−1)r+νe−
|h|
2

(

Jr−1

(√
2gk
)

Jr+2ν

(√
2gh

)

−Jr−1

(√
2gh
)

Jr+2ν

(√
2gk
))

][

σ̂s
0(h)+σ̂H(h)−

∫ +∞

−∞

dp

2π
(σ̂s

0(p)+σ̂H(p)) 2
sin(h−p)c

h−p

]

− e−
|k|
2

sinh |k|
2

∫ +∞

−∞

dp

2π
(σ̂s

0(p)+σ̂H(p))
sin(k−p)c

k−p
+

e−
|k|
2

sinh |k|
2

∫ +∞

−∞

dp

2π
σ̂s

0(p)
sin(k−p)c0

k−p
,

and also the normalization conditions,

2

∫ +∞

−∞

dk

2π
σ̂s

0(k)
sin kc0

k
= −2π(L − 2) , (2.12)

2

∫ +∞

−∞

dk

2π
[σ̂s

0(k) + σ̂H(k)]
sin kc

k
= −2π(L − 2) .

We now briefly comment on equations (2.11), (2.12). If such equations are supplemented

with equation (2.5) for the one loop density, they are sufficiently precise to capture the gen-

eralised scaling function f(g, j) appearing in the expansion (1.7). However, if in the one loop

density equation one includes the δ-term, i.e. if one uses (2.3), linear equations (2.11), (2.12)

are able to capture also the next-to-leading correction f (0)(g, j) in the scaling (1.7). This

marks a difference with linear equation of [13], which apparently seems (to us) not able to

give next-to-leading corrections to f(g, j).

Again, in the limit (1.4) both c and σH(u) expand in powers of j,

σH(u) =

[ ∞
∑

n=0

σ
(n)
H (u)jn

]

ln s + . . . , c =

∞
∑

n=1

c(n)jn + . . . , (2.13)

so that we find convenient to use the all loops density7

σ(u) = σH(u) + σs
0(u) , (2.14)

which expands as

σ(u) =

[ ∞
∑

n=0

σ(n)(u)jn

]

ln s + . . . . (2.15)

7The one loop quantity σs
0(u) is an approximation, according to (2.2), to the real one loop density. In

the limit (1.4) such approximation is completely justified.
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As in the one loop case, it is easy to give (see [21]) the first orders in the expansion of c in

the limit (1.4):

c(1) =
π

4 − σ
(0)
H (0)

, c(2) = −π
4 ln 2 − σ

(1)
H (0)

[

4 − σ
(0)
H (0)

]2 . (2.16)

Finally, by comparing (2.2) with (2.11), we can generalise the Kotikov-Lipatov relation

(concerning only the cusp anomalous dimension) [23]:

γ(g, s, L) =
1

π
lim
k→0

σ̂H(k) . (2.17)

This equality implies, very simply, that

fn(g) =
1

π
σ̂

(n)
H (0) . (2.18)

A systematic approach to the computation of fn(g) using the solution of (2.11) and explicit

formulæ which allow their exact determination at strong coupling is the main issue and

the main result of this paper.

3 On the calculation of the generalized scaling functions

From result (2.18) we realize that the generalised scaling functions fn(g) can be extracted

from the n-th component σ
(n)
H (u) of the solution of (2.9) in the limit (1.4). We are therefore

going to analyze in a systematic way (2.9) or (2.11) in such a limit. Equations for σ
(0)
H (u)

and σ
(1)
H (u) were already studied: the former is the well known BES equation (second

reference of [8]), the latter was treated in detail in [19]. Since in this paper we will use

results involving σ
(0)
H (u) and σ

(1)
H (u), we will treat also briefly these two cases, which, in

addition, need to be considered separately from the rest of the σ
(n)
H (u).

3.1 The BES equation

If we restrict (2.11) to the component proportional to ln s ·j0 we obtain, of course, the BES

equation for σ̂
(0)
H (k). We now briefly describe — using results of the first of [14] — how to

rewrite such equation in form of an infinite system, suitable for our future manipulations.

We first define

S(0)(k) =
2 sinh |k|

2

2π|k| σ̂
(0)
H (k) , (3.1)

and then expand S(0)(k), k ≥ 0, in series of Bessel functions,

S(0)(k) =

∞
∑

p=1

S
(0)
2p (g)

J2p

(√
2gk
)

k
+

∞
∑

p=1

S
(0)
2p−1(g)

J2p−1

(√
2gk
)

k
. (3.2)
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On the coefficients S
(0)
p (g) the BES equation implies the linear system,

S
(0)
2p (g) = −4p

∞
∑

m=1

Z2p,2m(g)S
(0)
2m(g) + 4p

∞
∑

m=1

Z2p,2m−1(g)S
(0)
2m−1(g) , (3.3)

S
(0)
2p−1(g) = 2

√
2g δp,1 − 2(2p − 1)

∞
∑

m=1

Z2p−1,2m(g)S
(0)
2m(g)

−2(2p − 1)

∞
∑

m=1

Z2p−1,2m−1(g)S
(0)
2m−1(g) ,

where we introduced the notation

Zn,m(g) =

∫ +∞

0

dh

h

Jn

(√
2gh

)

Jm

(√
2gh
)

eh − 1
. (3.4)

The cusp anomalous dimension can be extracted from the relations

lim
k→0+

S(0)(k) =
1

2
f(g) , f(g) =

√
2gS

(0)
1 (g) , (3.5)

and its strong coupling behaviour was completely disentangled in [15].

3.2 On the first generalized scaling function

The strong coupling limit of the first generalised scaling function was studied in [19]. Here

we briefly recall the main results. We define the even function

S(1)(k) =
2 sinh |k|

2

2π|k| σ̂
(1)
H (k) , (3.6)

and introduce the two functions

ar(g) =

∫ +∞

−∞

dh

h
Jr

(√
2gh

) 1

1 + e
|h|
2

, ār(g) =

∫ +∞

−∞

dh

|h|Jr

(√
2gh
) 1

1 + e
|h|
2

. (3.7)

Expanding, for k ≥ 0, in a series involving Bessel functions,

S(1)(k) =

∞
∑

p=1

S
(1)
2p (g)

J2p

(√
2gk
)

k
+

∞
∑

p=1

S
(1)
2p−1(g)

J2p−1

(√
2gk
)

k
, (3.8)

the coefficients S
(1)
r (g) satisfy the linear system,

S
(1)
2p (g) = 2+2p

(

−ā2p(g)−2

∞
∑

m=1

Z2p,2m(g)S
(1)
2m(g)+2

∞
∑

m=1

Z2p,2m−1(g)S
(1)
2m−1(g)

)

, (3.9)

S
(1)
2p−1(g)

2p−1
= −a2p−1(g)−2

∞
∑

m=1

Z2p−1,2m(g)S
(1)
2m(g)−2

∞
∑

m=1

Z2p−1,2m−1(g)S
(1)
2m−1(g) .
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In paper [19] we found the following asymptotic strong coupling solution to the system (3.9):

S
(1)
2m−1(g)

.
= (2m − 1)

m
∑

n′=1

(−1)n
′ Γ(m + n′ − 1)

Γ(m − n′ + 1)

b2n′−1

g2n′−1
, (3.10)

S
(1)
2m(g)

.
= −2m

m
∑

n′=1

(−1)n
′ Γ(m + n′)
Γ(m − n′ + 1)

b2n′

g2n′ ,

where the coefficients

b2n′ = 2−n′
(−1)n

′
n′
∑

k=0

E2k2
2k

(2k)!(2n′ − 2k)!
, (3.11)

b2n′−1 = 2−n′+ 1
2 (−1)n

′−1
n′−1
∑

k=0

E2k2
2k

(2k)!(2n′ − 2k − 1)!
,

with E2k the Euler’s numbers, sum up to the generating function

b(t) =
∞
∑

n′=0

bn′tn
′
=

1

cos t√
2
− sin t√

2

. (3.12)

In addition, the behaviour

f1(g) = 2 lim
k→0+

S(1)(k) =
√

2gS
(1)
1 (g) = −1 + m(g) + O

(

e
−3 π√

2
g
)

, (3.13)

m(g) =
2

5
8 π

Γ
(

5
4

)g
1
4 e

− πg√
2

[

1 +

∞
∑

n=1

kn

gn

]

,

where m(g) is the mass gap of the O(6) nonlinear sigma model, expressed in terms of pa-

rameters of the underlying AdS5×S5 sigma model, was shown (for the leading exponential)

in [19], after numerically solving the system (3.9). Later on, the embedding into the O(6)

NLSM has been proven analytically in [20]. In this perspective, the first massive excitations

of the string theory give a natural cut-off which determines univocally the coefficients of

the series, i.e. k1, k2, . . . . These can be, in principle, computed analytically by using results

of [20] and of the present paper (cf. (A.5)); the first two, k1, k2, will be given a numerical

estimate in subsection 5.2

3.3 On the second and higher generalised scaling functions

We now give a general scheme for tackling the problem of computing the n-th generalised

scaling function fn(g) for n ≥ 2 at arbitrary value of the coupling constant.

We start from (2.11) and define the function S(k):

ln s S(k) =
2 sinh |k|

2

2π|k| [σ̂H(k) + σ̂s
0(k)]+

e−
|k|
2

π|k|

∫ +∞

−∞

dp

2π
[σ̂s

0(p) + σ̂H(p)]
sin(k − p)c

k − p
, (3.14)

which, differently from the cases n = 0, n = 1, depends on the all loops density (2.14)

σ̂(k) = σ̂H(k) + σ̂s
0(k). Since we are in the limit (1.4), we naturally have

S(k) = s(0)(k) + s(1)(k)j +

∞
∑

n=2

S(n)(k)jn . (3.15)
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We focus on S(n)(k), with n ≥ 2. For such functions the following equation holds:

S(n)(k) =
1

π|k|

∫ +∞

−∞

dh

|h|

[ ∞
∑

r=1

r(−1)r+1Jr

(√
2gk
)

Jr

(√
2gh
) 1 − sgn(kh)

2
e−

|h|
2 (3.16)

+sgn(h)

∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)(−1)r+νe−
|h|
2

(

Jr−1

(√
2gk
)

Jr+2ν

(√
2gh
)

+Jr−1

(√
2gh
)

Jr+2ν

(√
2gk
))

][

π|h|
sinh |h|

2

S(n)(h)− e
|h|
2

sinh |h|
2

∫ +∞

−∞

dp

2π
σ̂(p)

sin(h−p)c

h−p

∣

∣

∣

∣

jn

]

,

where the symbol |jn means that we have to extract only the coefficient of jn in the

limit (1.4), after having removed the overall factor ln s.

Again, if we restrict the domain to k ≥ 0 we can expand in series of Bessel functions,

S(n)(k) =

∞
∑

p=1

S
(n)
2p (g)

J2p

(√
2gk
)

k
+

∞
∑

p=1

S
(n)
2p−1(g)

J2p−1

(√
2gk
)

k
, (3.17)

in such a way that the n-th generalised scaling function is expressed as (2.17), (3.14):

fn(g) =
√

2gS
(n)
1 (g) . (3.18)

After some computations (for details, see appendix A of [21]), we find the following system

of equations for the coefficients of S(n)(k), with n ≥ 2,

S
(n)
2p (g) = A

(n)
2p (g) − 4p

∞
∑

m=1

Z2p,2m(g)S
(n)
2m(g) + 4p

∞
∑

m=1

Z2p,2m−1(g)S
(n)
2m−1(g) , (3.19)

S
(n)
2p−1(g) = A

(n)
2p−1(g) − 2(2p − 1)

∞
∑

m=1

Z2p−1,2m(g)S
(n)
2m (g)

−2(2p − 1)

∞
∑

m=1

Z2p−1,2m−1(g)S
(n)
2m−1(g) ,

where the ’forcing terms’ A
(n)
r (g) are given by:

A(n)
r (g) = r

∫ +∞

0

dh

2πh

Jr

(√
2gh

)

sinh h
2

∫ +∞

−∞

dp

2π
2
sin(h − p)c

h − p
[σ̂s

0(p) + σ̂H(p)]

∣

∣

∣

∣

jn

. (3.20)

These systems have all the same kernel, which coincides with the BES one, and differ only

for their forcing terms. The inforcing of the normalization conditions in (3.20) will show

how the n-th forcing term depends on the solutions of the m-th system, with m ≤ n − 3,

allowing, therefore, their iterative solution. This will be the subject of next section, where

we are going to systematically tackle the problem of finding A
(n)
r (g) for all values of n, up

to the desired order.

As an example we now show that σ
(2)
H (u) = 0, so that we obviously have f2(g) = 0.

Let us consider the r.h.s. of (2.9). The first term is clearly proportional to j ln s, so it does
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not appear in the equation for σ
(2)
H (u). The second and the fifth term both have the form,

with two different functions f(v),

∫ +∞

−∞
dvf(v)σ(v)χd(v) =

∫ +∞

−∞

dk

2π
f̂(k)

∫ +∞

−∞

dp

2π
σ̂(p)2

sin(k − p)d

k − p
, (3.21)

where σ, d stand for σs
0 + σH , c, respectively, if we consider the second term, whilst for

σs
0, c0, respectively, if we consider the fifth term. Using the normalization condition

2

∫ ∞

−∞

dp

2π
σ̂(p)

sin pd

p
= −2π(L − 2) , (3.22)

one can show that

2

∫ +∞

−∞

dp

2π
σ̂(p)

sin(k − p)d

k − p
=
[

−2πj + O
(

d3
)]

ln s . (3.23)

Since d starts from order j in its expansion, the second and the fifth term in the r.h.s.

of (2.9) lack of the order j2 ln s terms in their expansion. The same reasoning, applied to

the second term in the rhs of (2.5) — the one containing the integral — implies that also

this term lacks of the order j2 ln s. Therefore, the third term in the r.h.s. of (2.9) is missing

the quadratic order as well. It follows that the equation for σ
(2)
H (u) is

σ
(2)
H (u) =

∫ +∞

−∞

dv

π

1

1 + (u − v)2
σ

(2)
H (v) (3.24)

− i

π

∫ +∞

−∞
dv

d

du



ln





1 − g2

2x+(u)x−(v)

1 − g2

2x−(u)x+(v)



+ iθ(u, v)



 σ
(2)
H (v) ,

whose solution is, of course, σ
(2)
H (u) = 0. Therefore f2(g) = 0, as as already presented in

the Bethe Ansatz [13] and string (penultimate reference in [17]) literature.

4 Systematorics

The main obstacle to obtain a fully explicit expression for the infinite linear system at a

generic order n is the double expansion contained in the term sin((h − p)c(j)) of equa-

tion (3.20). A similar structure is also present in the normalization conditions (2.12).

In order to overcome this technical problem, it is worth to remember a standard result

of combinatorics known as the Faà di Bruno’s formula [25]. Let f(x) and g(x) be a pair of

functions admitting (at least formally) a power expansion of this kind

f(x) =

∞
∑

n=1

fn

n!
xn, g(x) =

∞
∑

n=1

gn

n!
xn , (4.1)

then the composition g(f(x)) admits the following power expansion

g(f(x)) = h(x) =

∞
∑

n=1

hn

n!
xn , (4.2)
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where the coefficients hn have the following form

hn =

n
∑

k=1

gk Bn,k(f1, . . . , fn−k+1) . (4.3)

Bn,k(f) is the Bell polynomial defined as

Bn,k(f1, . . . , fn−k+1) = n!
∑

{j1,...,jn−k+1}

n−k+1
∏

m=1

(fm)jm

jm! (m!)jm
(4.4)

and the sum runs over all the non negative j’s satisfying the conditions

n−k+1
∑

m=1

jm = k,

n−k+1
∑

m=1

m jm = n.

The previous equation will be our main tool in the remaining part of this section. It is

straightforward to apply the previous formula to the present case, sin(p c(j)), being

sin x =

∞
∑

n=1

ξn

n!
xn, ξn =

1

2
in+1((−1)n − 1) (4.5)

and

c(j) =
∞
∑

n=1

c(n)jn. (4.6)

We end up with (we divide by p for future convenience)

sin(p c(j))

p
=

∞
∑

n=1

∑n
k=1 ξk

p n!
Bn,k

(

p c(1), . . . , p (n − k + 1)! c(n−k+1)
)

jn =

=
∞
∑

n=1

Λn(p) jn. (4.7)

Let us now use this result in order to write in a more convenient way both the normalization

conditions (2.12) and the forcing term (3.20). We begin with the analysis of Λn(p) in order

to put it in a more suitable form. Some elementary manipulations give the formula

Λn(p) =

n
∑

k=1

ξk βn,k

(

c(1), . . . , c(n−k+1); p
)

, (4.8)

with

βn,k

(

c(1), . . . , c(n−k+1); p
)

=
∑

{j1,...,jn−k+1}

(

pk−1
)

n−k+1
∏

m=1

(

c(m)
)jm

jm!
,

n−k+1
∑

m=1

jm = k ,

n−k+1
∑

m=1

mjm = n . (4.9)
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The forcing term and the normalization conditions have a common structure

sin(p1 c(j))

p1
σ̂(p2) =

( ∞
∑

n=1

Λn(p1) jn

)( ∞
∑

n=0

σ̂(n)(p2) jn

)

ln s

=

∞
∑

n=1

Γn(p1, p2) jn ln s , (4.10)

where

Γn(p1, p2) =

n
∑

k=1

Λk(p1) σ̂(n−k)(p2). (4.11)

We can finally write the coefficient in the expansion in powers of j of the integral over the

momentum which appears in the forcing term as

2

∫ +∞

−∞

dp

2π
Γn(h − p, p) ln s , (4.12)

along with the normalization condition
∫ +∞

−∞

dp

2π
Γn(p, p) = −π δn,1. (4.13)

Our next step will be to enforce the normalization condition in the forcing term in order to

gain a simplification of its structure. We notice that Λn(p) has a momentum independent

term corresponding to the term k = 1 in the sum (4.8) and hence Γn(p1, p2) admits the

following decomposition

Γn(p1, p2) = Γ(0)
n (p2) + Γ̃n(p1, p2), Γ(0)

n (p2) =
n
∑

k=1

σ̂(n−k)(p2) c(k). (4.14)

The normalization condition then becomes

−
∫ +∞

−∞

dp

2π
Γ(0)

n (p) =

∫ +∞

−∞

dp

2π
Γ̃n(p, p) + π δn,1 , (4.15)

which allows to subtract the Γ
(0)
n (p) contribution in the forcing term:

2

∫ +∞

−∞

dp

2π
Γn(h − p, p) = −2πδn,1 + 2

∫ +∞

−∞

dp

2π
[Γn(h − p, p) − Γn(p, p)] (4.16)

= −2πδn,1 + 2

∫ +∞

−∞

dp

2π
[∆n(h − p, p)] .

For instance, this subtraction is responsible for A
(2)
r (g) = 0 and hence for what has been

noticed at end of subsection 3.3, i.e. f2(g) = 0.

The final step is to make this subtraction explicit for any n. With this aim in mind,

we need to consider the even parity of the Fourier transforms of the densities σ̂n(p) and

we define the s-derivative of the n-th density in u = 0 as

σ(n);(s) ≡ dsσ(n)(u)

dus

∣

∣

∣

u=0
. (4.17)
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Thus, the following relation allows us to perform the integral over p,

i−sσ(n−k);(s) =

∫ +∞

−∞

dp

2π
ps σ̂(n−k)(p) =

= 2ds

∫ +∞

0

dp

2π
ps σ̂(n−k)(p) , ds =

1

2
(1 + (−1)s) , (4.18)

which is different from zero only for s even, due to the parity property of σ̂(n−k)(p).

It is then possible to rewrite ∆n(h − p, p) as follows

∆n(h − p, p) =
n
∑

k=1

σ̂(n−k)(p)(Λk(h − p) − Λk(p)) , (4.19)

where

Λk(h−p)−Λk(p) =

k
∑

l=1

ξl

∑

{j1,...,jk−l+1}

k−l+1
∏

m=1

(

c(m)
)jm

jm!

(

(h−p)l−1−pl−1
)

(4.20)

=

k
∑

l=1

ξl

∑

{j1,...,jk−l+1}

k−l+1
∏

m=1

(

c(m)
)jm

jm!

(

l−1
∑

s=0

(

l−1

s

)

hl−1−s(−1)sps−pl−1

)

=
k
∑

l=3

ξl

∑

{j1,...,jk−l+1}

k−l+1
∏

m=1

(

c(m)
)jm

jm!

(

l−2
∑

s=0

(

l−1

s

)

hl−1−s(−1)sps+(−p)l−1 − pl−1

)

=
k
∑

l=3

ξl

(

l−2
∑

s=0

(

l−1

s

)

hl−1−s(−p)s

)

∑

{j1,...,jk−l+1}

k−l+1
∏

m=1

(

c(m)
)jm

jm!
,

k−l+1
∑

m=1

jm = l,

k−l+1
∑

m=1

m jm = k .

The last step comes from the fact that it is always (−p)l−1 − pl−1 = 0, because ξl is non-

vanishing only for odd l. One can also notice that the subtraction and the fact that ξ2 = 0

allow the sum over l to begin from l = 3.

The previous result, together with eq. (4.18), allows to write down, for n ≥ 2,

2

∫ +∞

−∞

dp

2π
Γn(h − p, p) = 2

∫ +∞

−∞

dp

2π
[Γn(h − p, p) − Γn(p, p)] (4.21)

= 2

∫ +∞

−∞

dp

2π
[∆n(h − p, p)]

= 2

n
∑

k=1

k
∑

l=3

ξl

(

l−2
∑

s=0

(

l − 1

s

)

ds hl−1−s(−i)−sσ(n−k);(s)

)

∑

{j1,...,jk−l+1}

k−l+1
∏

m=1

(

c(m)
)jm

jm!
,

k−l+1
∑

m=1

jm = l,

k−l+1
∑

m=1

m jm = k ,

which is nothing but the explicit n-th term of the j expansion of the integral over p which

appears in the forcing term. Then, if we pose

I
l,s
r = r

∫ +∞

0

dh

2πh

Jr

(√
2gh

)

sinh h
2

hl−1−s ,
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we can explicitly write down the generic expression for the forcing term A
(n)
r (g), n ≥ 2,

entering the system (3.19) for the n-th term of the j expansion of the function S(k):

A(n)
r (g) = 2

n
∑

k=1

k
∑

l=3

ξl

(

l−2
∑

s=0

(

l − 1

s

)

ds (−i)−sσ(n−k);(s)
I
l,s
r

)

∑

{j1,...,jk−l+1}

k−l+1
∏

m=1

(

c(m)
)jm

jm!
,

k−l+1
∑

m=1

jm = l,

k−l+1
∑

m=1

m jm = k . (4.22)

Because of the particular form of the forcing terms, it is convenient to write the solution

of (3.19) as

S(n)
r (g) = 2

n
∑

k=1

k
∑

l=3

ξl

(

l−2
∑

s=0

(

l−1

s

)

ds (−i)−sσ(n−k);(s) S̃
( l−s−1

2 )
r (g)

)

∑

{j1,...,jk−l+1}

k−l+1
∏

m=1

(

c(m)
)jm

jm!
,

k−l+1
∑

m=1

jm = l,

k−l+1
∑

m=1

m jm = k , (4.23)

where the “reduced” coefficients S̃
(k)
r satisfy the equations

S̃
(k)
2p (g) = I

(k)
2p (g)−4p

∞
∑

m=1

Z2p,2m(g)S̃
(k)
2m(g)+4p

∞
∑

m=1

Z2p,2m−1(g)S̃
(k)
2m−1(g) , (4.24)

S̃
(k)
2p−1(g) = I

(k)
2p−1(g)−2(2p−1)

∞
∑

m=1

Z2p−1,2m(g)S̃
(k)
2m(g)−2(2p−1)

∞
∑

m=1

Z2p−1,2m−1(g)S̃
(k)
2m−1(g) ,

with the reduced forcing terms,

I
(k)
r = r

∫ +∞

0

dh

2π
h2k−1 Jr

(√
2gh

)

sinh h
2

, (4.25)

which are ’known’ functions, i.e. they do not depend on the quantities σ(n′);(s). We notice

that inside the structure of the forcing term A
(n)
r (g) (4.22) we find the constants c(m), with

m ≤ n − 2 and the densities of the Bethe roots at u = 0 (together with their derivatives)

σ(n′);(s), with n′ ≤ n − 3. In addition, the constants c(m) can be related to σ(n′);(s), with

n′ ≤ m − 1, by means of the normalization condition (4.13), thus leaving the forcing term

A
(n)
r (g) as dependent on σ(n′);(s), with n′ ≤ n − 3. Let us now find the relation between

c(m) and σ(n′);(s). We first of all notice that, for n = 1, we have

c(1) = − π

σ(0);(0)
(4.26)

and that, for m > 1, the normalization condition takes the form

m
∑

k=1

k
∑

l=1

ξl (i)
−l+1σ(m−k);(l−1)

∑

{j1,...,jk−l+1}

k−l+1
∏

m′=1

(

c(m′)
)jm′

jm′ !
= 0 , (4.27)

k−l+1
∑

m′=1

jm′ = l,
k−l+1
∑

m′=1

m′ jm′ = k .
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After a brief inspection of the latter it is possible to realize that, at order m, the only term

which contains c(m) can be singled out by taking k = m, l = 1, and that the remaining

terms in the sums only contain c(k) with k < m.

As a consequence, we can write a recursion relation

c(m) = −
m−1
∑

k=1

σ(m−k);(0)

σ(0);(0)
c(k) − (4.28)

−
m
∑

k=1

k
∑

l=2

ξl (i)
−l+1 σ(m−k);(l−1)

σ(0);(0)

∑

{j1,...,jk−l+1}

k−l+1
∏

m′=1

(

c(m′)
)jm′

jm′ !
, m > 1 ,

k−l+1
∑

m′=1

jm′ = l,

k−l+1
∑

m′=1

m′ jm′ = k .

which, together with the initial condition (4.26), allows to express all the c(m) recursively,

in terms of σ(n′);(s), with n′ ≤ m − 1. Therefore, we conclude that the forcing term

A
(n)
r (g) (4.22) and the solution S

(n)
r (g) (4.23) actually depend only on σ(n′);(s), with n′ ≤

n − 3, i.e. on the solutions of previous systems. Consequently, at least in principle, the

solution for the S
(n)
r (g) may be found by recursive methods.

To summarise, the principal result of this section is formula (4.23): the evaluation of

the n-th generalised scaling function fn(g) =
√

2gS
(n)
1 (g), for n ≥ 2, is eventually reduced

to the knowledge of S̃
(k)
1 (g) and of the densities and their derivatives in zero, σ(n′);(s) (4.18),

with n′ ≤ n−3. In next subsection, we will show that S̃
(k)
1 (g) (and f1(g) =

√
2gS

(1)
1 (g)) can

be given an integral representation in terms of the solution of the BES equation. However,

this connection to the BES equation (true, for obvious reasons, also for σ(0);(s)) is not true

for the densities and their derivatives at zero σ(n′);(s), n′ ≥ 1: in order to find them, one

needs more additional information, i.e. the full solution S
(1)
r (g), S̃

(k)
r (g), for all r, to the

systems (3.9), (4.24). However, we again stress that, due to iterative structure of (4.23), an

explicit solution for the S
(n)
r (g) can be found by recursive methods. This will be explicitly

shown in the strong coupling limit (section 5).

4.1 Mapping the reduced systems to the BES equation

As stated before, the main point of this subsection is to write down an integral represen-

tation for the reduced coefficient S̃
(k)
1 (g) and for S

(1)
1 (g), in terms of the solution of the

BES equation.

As a first step we rewrite the BES linear system (3.3) introducing the even/odd Neu-

mann expansion8

σ
(0)
+

(√
2gt
)

=
∞
∑

p=1

S
(0)
2p (g)J2p

(√
2gt
)

, σ
(0)
−

(√
2gt
)

=
∞
∑

p=1

S
(0)
2p−1(g)J2p−1

(√
2gt
)

, (4.29)

8The use of σ
(0)
± (

√
2gt) is redundant with respect to S(0)(k) (3.2). However, since in appendix A we will

use results of [20], we prefer to use here notations of that paper.
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with the coefficients S
(0)
r (g) given by

S
(0)
2p (g)=2(2p)

∫ +∞

0

dt

t
σ

(0)
+ (t)J2p(t), S

(0)
2p−1(g) = 2(2p−1)

∫ +∞

0

dt

t
σ

(0)
− (t)J2p−1(t) . (4.30)

Then, the BES linear system can be cast in the form [15]

∫ +∞

0

dt

t

[

σ
(0)
+

(√
2gt
)

1 − e−t
− σ

(0)
−
(√

2gt
)

et − 1

]

J2p

(√
2gt
)

= 0 , (4.31)

∫ +∞

0

dt

t

[

σ
(0)
−
(√

2gt
)

1 − e−t
+

σ
(0)
+

(√
2gt
)

et − 1

]

J2p−1

(√
2gt
)

=
√

2g δ1,p .

Since the kernel of the reduced system (4.24) is the same as the BES one (3.3), it is possible

to use the same procedure introducing the functions

σ
(k)
+

(√
2gt
)

=

+∞
∑

p=1

S̃
(k)
2p (g)J2p

(√
2gt
)

, σ
(k)
−
(√

2gt
)

=

+∞
∑

p=1

S̃
(k)
2p−1(g)J2p−1

(√
2gt
)

, (4.32)

together with

S̃
(k)
2p (g)=2(2p)

∫ ∞

0

dt

t
σ

(k)
+ (t)J2p(t), S̃

(k)
2p−1(g)=2(2p − 1)

∫ ∞

0

dt

t
σ

(k)
− (t)J2p−1(t) . (4.33)

And, from the system (4.24), we derive the following equations for the functions σ
(k)
± (t):

∫ +∞

0

dt

t

[

σ
(k)
+

(√
2gt
)

1−e−t
−σ

(k)
−
(√

2gt
)

et−1

]

J2p

(√
2gt
)

=
1

4π

∫ +∞

0
dt

t2k−1

sinh t/2
J2p

(√
2gt
)

, (4.34)

∫ +∞

0

dt

t

[

σ
(k)
−
(√

2gt
)

1−e−t
+

σ
(k)
+

(√
2gt
)

et−1

]

J2p−1

(√
2gt
)

=
1

4π

∫ +∞

0
dt

t2k−1

sinh t/2
J2p−1

(√
2gt
)

.

The next step is to perform some manipulations on systems (4.31), (4.34), in order to

exploit their similarities. Concentrating first on (4.31), we multiply both sides of the first

equation by S̃
(k)
2p (g), and both sides of the second equation by S̃

(k)
2p−1(g). Summing over p

in both of them, we end up with

∫ +∞

0

dt

t

[

σ
(0)
+

(√
2gt
)

σ
(k)
+

(√
2gt
)

1 − e−t
− σ

(0)
−
(√

2gt
)

σ
(k)
+

(√
2gt
)

et − 1

]

= 0 ,

∫ +∞

0

dt

t

[

σ
(0)
−
(√

2gt
)

σ
(k)
−
(√

2gt
)

1 − e−t
+

σ
(0)
+

(√
2gt
)

σ
(k)
−
(√

2gt
)

et − 1

]

=
√

2g S̃
(k)
1 (g) ,

where we notice that the coefficient S̃
(k)
1 (g) is explicitly singled out.

The same procedure can be repeated upon (4.34), by multiplying the first equation by

S
(0)
2p (g), the second by S

(0)
2p−1(g) and finally summing over p. The result is as follows:

∫ +∞

0

dt

t

[

σ
(0)
+

(√
2gt
)

σ
(k)
+

(√
2gt
)

1−e−t
−σ

(0)
+

(√
2gt
)

σ
(k)
−
(√

2gt
)

et − 1

]

=
1

4π

∫ +∞

0
dt

t2k−1

sinh t/2
σ

(0)
+

(√
2gt
)

,

∫ +∞

0

dt

t

[

σ
(0)
−
(√

2gt
)

σ
(k)
−
(√

2gt
)

1−e−t
+

σ
(0)
−
(√

2gt
)

σ
(k)
+

(√
2gt
)

et−1

]

=
1

4π

∫ +∞

0
dt

t2k−1

sinh t/2
σ

(0)
−
(√

2gt
)

.
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A direct comparison with the previous equations allows to eventually obtain the integral

representation for S̃
(k)
1 (g),

√
2g S̃

(k)
1 (g) = − 1

4π

∫ +∞

0
dt

t2k−1

sinh t/2

[

σ
(0)
+

(√
2gt
)

− σ
(0)
−
(√

2gt
)]

. (4.35)

For what concerns the coefficient S
(1)
1 (g), relevant for the computation of f1(g), the proce-

dure is identical — one starts from (3.9) — but the result is slightly different. We have

√
2g S

(1)
1 (g) = −

∫ ∞

0

dt

t

1

2 cosh t/4

[

e−
t
4 σ

(0)
−
(√

2gt
)

+ e
t
4 σ

(0)
+

(√
2gt
)]

. (4.36)

Equations (4.35), (4.36) are the representations of, respectively, S̃
(k)
1 (g) and S

(1)
1 (g) in

terms of the BES quantities σ
(0)
±
(√

2gt
)

, defined in (4.29).

Now, for completeness’ sake and since we will be using it, we write also the integral rep-

resentation in terms of the solution of the BES equation for the density and its derivatives

in zero σ(0);(s). This representation follows trivially from the definition (3.1):

i−sσ(0);(s) = −4δs,0 + i−sσ
(0);(s)
H , (4.37)

i−sσ
(0);(s)
H = ds

∫ +∞

0
dk

ks

sinh k/2

∞
∑

p=1

S(0)
p (g)Jp

(√
2gk
)

= ds

∫ +∞

0
dk

ks

sinh k/2

[

σ
(0)
+

(√
2gk
)

+ σ
(0)
−
(√

2gk
)]

.

We have reached naturally one of the main points of our work and some comments are

in order. We have found that the generalised scaling functions fn(g), n ≥ 2, enjoy an

expression (4.23) in terms of the ’reduced’ coefficients S̃
(k)
1 (g) — related to the solution of

the BES equation — and of the densities and their derivatives at zero σ(n′);(s), n′ ≤ n − 3

— related (when n′ ≥ 1) also to the other, ’higher’, systems of equations (3.9), (4.24).

This result is in close analogy with formula (A.4) of [20]: this is an integral expression in

which the generalised scaling function is given in terms of solutions of the BES equations

and of the density of holes, which in the limit (1.4) is expressed in terms of the various

σ(n′);(s). Our new contribution in the subject is to have highlighted the recursive structure

of general formulæ for fn(g): this allows analytic and numerical evaluations, which we will

perform explicitly in the strong coupling limit.

From the physical point of view the quantities S̃
(k)
1 (g) and σ(n′);(s) can be reorganised in

order to define different ’masses’ of the theory, denoted below by mn(g) (the precise defini-

tion of the mn(g) will be given on particular examples at the end of subsection 5.1). While

computations of the various S̃
(k)
1 (g) and σ(n′);(s) at generic g is technically challenging, in

next section we will show that all these independent quantities can be explicitly computed

in the strong coupling limit, by exploiting the recursive properties of the equations they

satisfy. Importantly, we will show that — confirming predictions contained in [11] — in

the strong coupling limit they will be all expressed in terms of one quantity, the mass gap

m(g) (3.13) of the O(6) nonlinear sigma model, embedded in the N = 4 SYM theory, which

is, in particular, the limiting value of all the mn(g). In our approach it will be also possible
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to study their corrections to the pure O(6) limit: results on this issue are contained in

subsection 5.2.

5 Explicit results at strong coupling

In this section we will solve the system (4.24) for S̃
(k)
r (g) as the asymptotic series in

inverse powers of g. Also, we will compute the leading strong coupling order of two sets of

quantities: on the one hand σ(0);(s) and S̃
(k)
1 (g), on the other hand σ(n′);(s), with n′ ≥ 1,

and c(m).9

The first set of quantities can be computed by relying on the solution of the BES

problem. Indeed, a simple but long calculation, whose details are given in appendix A,

allows us to give the following analytic estimates for large g:

√
2gS̃

(k)
1 (g) =

(−1)k+1

4π

(π

2

)2k
2m(g) + O

(

e
− 3πg√

2

)

,

σ
(0);(2k)
H = −

(π

2

)2k
π m(g) + O

(

e
− 3πg√

2

)

, k > 0 , (5.1)

σ
(0);(0)
H = 4 − π m(g) + O

(

e
− 3πg√

2

)

,

where m(g) (3.13) turns out to be the O(6) NLSM mass gap. Using the first of (4.37) we

can write, for the all loop density,

√
2gS̃

(k)
1 (g) =

(−1)k+1

4π

(π

2

)2k
2m(g) + O

(

e
− 3πg√

2

)

, (5.2)

σ(0);(2k) = −
(π

2

)2k
π m(g) + O

(

e
− 3πg√

2

)

,

thus showing that in the strong coupling limit the quantities σ(0);(s) and S̃
(k)
1 (g) (which,

for generic g, are ’independent’ quantities) flow into expressions depending on the single

function m(g).

For what concerns the σ(1);(s), using the asymptotic solution (3.10), (3.11) for S
(1)
p (g),

we will explicitly write below in (5.14) their strong coupling leading term.

Finally, in order to deal with the σ(n′);(s), with n′ ≥ 2, and the c(m), we will first solve

the system (4.24) for S̃
(k)
r (g) as the asymptotic series in inverse powers of g. Then, we will

plug this expression into the recursive equation (5.15) relating the quantities σ(n′);(s), with

n′ ≥ 2, and the constants c(m). This equation — together with (4.28) — will allow to find

recursively the strong coupling behaviour of both σ(n′);(s), with n′ ≥ 2, and the c(m).

Let us start from the reduced system (4.24) and let us look for a solution of it in

the form

S̃
(k)
2m(g)

.
=

∞
∑

n=k

S̃
(k;2n)
2m

g2n
, S̃

(k)
2m−1(g)

.
=

∞
∑

n=k+1

S̃
(k;2n−1)
2m−1

g2n−1
, (5.3)

9In this second case we will also consider non-analytic corrections, which which are here of exponential

nature. Since these corrections do not have an asymptotic expansion, they are called sometimes non-

asymptotic.
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with

S̃
(k;2n)
2m = 2m

Γ(m + n)

Γ(m − n + 1)
(−1)1+nb̃

(k)
2n , n ≥ k , (5.4)

S̃
(k;2n−1)
2m−1 = (2m − 1)

Γ(m + n − 1)

Γ(m − n + 1)
(−1)nb̃

(k)
2n−1 , n ≥ k + 1 . (5.5)

Usual techniques [19, 21] allow to find the unknowns b̃
(k)
2n−1, b̃

(k)
2n as solutions of the two

recursive equations

b̃
(k)
2n =

n−k
∑

m=0

(−1)m2m+ 1
2
b̃
(k)
2n−2m+1

(2m)!
B2m, n ≥ k , (5.6)

b̃
(k)
2n+1 =

(−1)n

2π
22k+ 1

2
−n 22n−2k+1 − 1

(2n − 2k + 2)!
B2n−2k+2+

n+1−k
∑

m=0

(−1)m2m+ 1
2
b̃
(k)
2n+2−2m

(2m)!
B2m , n ≥ k .

By comparing such equations with the corresponding equations for the coefficients bN

appearing in the asymptotic solution for S
(1)
N (g) we find the simple correspondence

b̃
(k)
N =

(−1)k+12k

2π
bN−2k , N ≥ 2k . (5.7)

Putting all the relevant relations inside (4.23) and redefining (for conciseness’ sake) the

indexes l and s, we finally find the asymptotic expansions10

S
(n)
2p (g)

.
=

2p

π

n
∑

k=1

[ k−1
2 ]
∑

l=1

(−1)l

[

l−1
∑

s=0

(

2l

2s

)

(−1)sσ(n−k);(2s) ·

·
∞
∑

n′=0

2l−s(−1)n
′

g2n′+2l−2s

Γ(p + n′ + l − s)

Γ(p − n′ − l + s + 1)
b2n′

]

∑

{j1,...,jk−2l}

k−2l
∏

m=1

(

c(m)
)jm

jm!
, (5.8)

and

S
(n)
2p−1(g)

.
=

2p − 1

π

n
∑

k=1

[k−1
2 ]
∑

l=1

(−1)l

[

l−1
∑

s=0

(

2l

2s

)

(−1)sσ(n−k);(2s) ·

·
∞
∑

n′=0

2l−s(−1)n
′

g2n′+2l−2s+1

Γ(p + n′ + l − s)

Γ(p − n′ − l + s)
b2n′+1

]

∑

{j1,...,jk−2l}

k−2l
∏

m=1

(

c(m)
)jm

jm!
, (5.9)

where the positive integers jm have to satisfy

k−2l
∑

m=1

jm = 2l + 1 ,

k−2l
∑

m=1

mjm = k . (5.10)

We are now ready to discuss the strong coupling behaviour of the densities of Bethe

roots and their derivatives at u = 0, σ(n);(s), when n ≥ 1. We have to distinguish between

the case n = 1 and the cases n ≥ 2.

10The notation [x] present in (5.8), (5.9) stands for the integer part of the semi-integer x.
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In the case n = 1 we have that

σ
(1);(0)
0 = −4 ln 2 , i−sσ

(1);(s)
0 = ds

(

4 − 2s+2
)

Γ(s + 1)ζ(s + 1) , s ≥ 2 , (5.11)

for the one loop theory and

i−sσ
(1);(s)
H = ds

∫ +∞

0
dk

ks

sinh k/2

∞
∑

p=1

S(1)
p (g)Jp

(√
2gk
)

, (5.12)

for the higher than one loop contributions. We now insert in (5.12) the asymptotic solu-

tion [19] for S
(1)
p (g), reported also in (3.10), (3.11). Summing first over p and then over n′

and finally integrating in k we get11

σ
(1);(0)
H = 3 ln 2−π

2
+O

(

e
− 2πg√

2

)

, (5.13)

i−sσ
(1);(s)
H = ds

[

(

2s+2−4+2−2s−2−s
)

Γ(s+1)ζ(s+1)−
(π

2

)s+1
|Es|+O

(

e
− 2πg√

2

)

]

, s ≥ 2 ,

where Ek are the Euler’s numbers. Adding the one loop results, one gets the explicit

formula

σ(1);(0) = − ln 2 − π

2
+ O

(

e
− 2πg√

2

)

, (5.14)

i−sσ(1);(s) = ds

[

(

2−2s − 2−s
)

Γ(s + 1)ζ(s + 1) −
(π

2

)s+1
|Es| + O

(

e
− 2πg√

2

)

]

, s ≥ 2 .

For the case n ≥ 2 we start from (3.14) and write

i−sσ(n);(s) = 2ds

∫ +∞

0

dk

2π
ks

[

πk

sinh k
2

S(n)(k)− e−
k
2

sinh k
2

∫ +∞

−∞

dp

2π
σ̂(p)

sin(k − p)c

k − p

∣

∣

∣

∣

jn

]

. (5.15)

We then insert (5.8), (5.9) in the expansion (3.17) of S(n)(k) in series of Bessel functions

and use (4.21) to express the integral term in the square brackets. Summing on the indexes

p and n′ coming from (5.8), (5.9), we end up with the previously announced strong coupling

11The numerical analysis gives a convincing evidence that the leading correction to the densities (5.13)

is exponentially small and behaves like O

„

e
− 2πg
√

2

«

. An analytic proof of this fact is still lacking.
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recursive equation,

i−sσ(n);(s) = ds

n
∑

k=1

[k−1
2 ]
∑

l=1

(−1)l
l−1
∑

s′=0

(

2l

2s′

)

(−1)s
′
σ(n−k);(2s′) · (5.16)

·
∫ +∞

0

dk

π

ks+2l−2s′

sinh k
2

(

e
k
2

cosh k
− e−

k
2

)

∑

{j1,...,jk−2l}

k−2l
∏

m=1

(

c(m)
)jm

jm!
+ . . .

= ds

n
∑

k=1

[k−1
2 ]
∑

l=1

(−1)l
l−1
∑

s′=0

(

2l

2s′

)

(−1)s
′
σ(n−k);(2s′) ·

· 1
π

[

(

2−s−2l+2s′ − 2−2s−4l+4s′
)

Γ
(

s + 2l − 2s′ + 1
)

ζ
(

s + 2l − 2s′ + 1
)

+

+
(π

2

)s+2l−2s′+1
|Es+2l−2s′ |

]

∑

{j1,...,jk−2l}

k−2l
∏

m=1

(

c(m)
)jm

jm!
+ . . . ,

where, again,
k−2l
∑

m=1

jm = 2l + 1 ,

k−2l
∑

m=1

mjm = k . (5.17)

As we said before, this equation has to be solved together with (4.28).

To summarize the results, in this section we have shown that, similarly to the case of

S
(1)
r (g) [19], also the system for the S̃

(k)
r (g) can be solved in form of an asymptotic series at

large g. This allowed to write for the σ(n′);(s), n′ ≥ 2, the recursion relation (5.16) — which

goes together with the explicit expressions (5.14), (5.2), coming from the solution of the

systems for S
(1)
r (g) and from results contained in appendix A, respectively. In this (strong

coupling) regime, the set of constants c(m) and the set of densities σ(n′);(k), n′ ≥ 2, can be

computed by solving simultaneously the recursive relations (4.28) and (5.16). Putting their

expressions, together with the expressions (5.2) for S̃
(k)
1 (g), σ(0);(2k), and (5.14) for σ(1);(2k),

into (4.23), one will get the expression for S
(n)
1 (g) and, consequently, for fn(g) =

√
2gS

(n)
1 (g)

at strong coupling.

As an application of all these techniques, in the next section we will compute explicitly

the strong coupling limit of the scaling functions f3(g), . . . , f8(g).

5.1 Examples: f3(g) to f8(g)

The previous machinery can be tested by computing the strong coupling behaviour of fn(g),

for 3 ≤ n ≤ 8, in order to compare it with the available results from the O(6) NLSM. In

this respect we remember that a recent proposal by Alday and Maldacena [11], formulated

on the string side of the AdS/CFT correspondence, states that in the limit (1.4), when

g → ∞, j ≪ g, with j/m(g) fixed, the quantity f(g, j) + j has to coincide with the

energy density of the ground state of the O(6) nonlinear sigma model. When j/m(g) ≪ 1

we are in the nonperturbative regime of the O(6) NLSM. In this case the energy density

can be computed by using Bethe Ansatz related techniques. This computation has been
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systematically performed in [22]. In order to have agreement between our calculations for

f(g, j) and computations of [22] in the O(6) NLSM, we must have that the quantities Ωn(g)

computed in that paper have to be related to fn(g) by the relation fn(g) = 2n−1Ωn(g).

In this subsection we will check this equality, for 3 ≤ n ≤ 8, by using also symbolic

manipulations performed by means of a Mathematica R© code reported in appendix B.

First of all, we need to know the expression of c(1), . . . , c(6). From the recursion for-

mula (4.28) we get

c(1) = − π

σ(0);(0)
, (5.18)

c(2) = π
σ(1);(0)

[

σ(0);(0)
]2 , (5.19)

c(3) =
π3

6

σ(0);(2)

[

σ(0);(0)
]4 − π

[

σ(1);(0)
]2

[

σ(0);(0)
]3 , (5.20)

c(4) = π
σ(3);(0)

[

σ(0);(0)
]2 − 2

3
π3 σ(0);(2)σ(1);(0)

[

σ(0);(0)
]5 + π

[

σ(1);(0)
]3

[

σ(0);(0)
]4 +

1

6
π3 σ(1);(2)

[

σ(0);(0)
]4 , (5.21)

c(5) = −π
[

σ(1);(0)
]4

[

σ(0);(0)
]5 +

5π3σ(0);(2)
[

σ(1);(0)
]2

3
[

σ(0);(0)
]6 − 2π3σ(1);(2)σ(1);(0)

3
[

σ(0);(0)
]5 − 2πσ(3);(0)σ(1);(0)

[

σ(0);(0)
]3

−π5
[

σ(0);(2)
]2

12
[

σ(0);(0)
]7 +

π5σ(0);(4)

120
[

σ(0);(0)
]6 +

πσ(4);(0)

[

σ(0);(0)
]2 , (5.22)

c(6) =
π
[

σ(1);(0)
]5

[

σ(0);(0)
]6 − 10π3σ(0);(2)

[

σ(1);(0)
]3

3
[

σ(0);(0)
]7 +

5π3σ(1);(2)
[

σ(1);(0)
]2

3
[

σ(0);(0)
]6 +

3πσ(3);(0)
[

σ(1);(0)
]2

[

σ(0);(0)
]4

+
7π5

[

σ(0);(2)
]2

σ(1);(0)

12
[

σ(0);(0)
]8 − π5σ(0);(4)σ(1);(0)

20
[

σ(0);(0)
]7 − 2πσ(4);(0)σ(1);(0)

[

σ(0);(0)
]3 − π5σ(0);(2)σ(1);(2)

6
[

σ(0);(0)
]7

+
π5
[

σ(1);(4)
]

120
[

σ(0);(0)
]6 − 2π3σ(0);(2)σ(3);(0)

3
[

σ(0);(0)
]5 +

π3
[

σ(3);(2)
]

6
[

σ(0);(0)
]4 +

π
[

σ(5);(0)
]

[

σ(0);(0)
]2 . (5.23)

Then, referring for the notations to (4.21), we have

2

∫ ∞

−∞

dp

2π
[Γ3(h − p, p) − Γ3(p, p)] =

1

3
π3 h2

[

σ(0);(0)
]2 (5.24)

2

∫ ∞

−∞

dp

2π
[Γ4(h − p, p) − Γ4(p, p)] = −2

3
π3 h2σ(1);(0)

[

σ(0);(0)
]3 (5.25)

2

∫ ∞

−∞

dp

2π
[Γ5(h − p, p) − Γ5(p, p)] = − π5h4

60
[

σ(0);(0)
]4 +

π3
[

σ(1);(0)
]2

h2

[

σ(0);(0)
]4 − π5σ(0);(2)h2

15
[

σ(0);(0)
]5 (5.26)

2

∫ ∞

−∞

dp

2π
[Γ6(h − p, p) − Γ6(p, p)] =

π5h4σ(1);(0)

15
[

σ(0);(0)
]5 − 2

3

π3σ(3);(0)h2

[

σ(0);(0)
]3 +

1

3

π5σ(1);(0)σ(0);(2)h2

[

σ(0);(0)
]6

−4

3

π3
[

σ(1);(0)
]3

h2

[

σ(0);(0)
]5 − 1

15

π5σ(1);(2)h2

[

σ(0);(0)
]5 (5.27)
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2

∫ ∞

−∞

dp

2π
[Γ7(h − p, p)−Γ7(p, p)] =

π7h6

2520
[

σ(0);(0)
]6 −

π5
[

σ(1);(0)
]2

h4

6
[

σ(0);(0)
]6 +

π7σ(0);(2)h4

126
[

σ(0);(0)
]7

+
5π3
[

σ(1);(0)
]4

h2

3
[

σ(0);(0)
]6 +

π7
[

σ(0);(2)
]2

h2

36
[

σ(0);(0)
]8

−π5σ(0);(2)
[

σ(1);(0)
]2

h2

[

σ(0);(0)
]7

− π7σ(0);(4)h2

420
[

σ(0);(0)
]7 +

π5
[

σ(1);(0)
]

σ(1);(2)h2

3
[

σ(0);(0)
]6 +

+
2π3
[

σ(1);(0)
]

σ(3);(0)h2

[

σ(0);(0)
]4 − 2π3σ(4);(0)h2

3
[

σ(0);(0)
]3 (5.28)

2

∫ ∞

−∞

dp

2π
[Γ8(h − p, p) − Γ8(p, p)] = −π7

[

σ(1);(0)
]

h6

420
[

σ(0);(0)
]7 +

π5
[

σ(1);(0)
]3

h4

3
[

σ(0);(0)
]7

−π7σ(0);(2)
[

σ(1);(0)
]

h4

18
[

σ(0);(0)
]8

+
π7σ(1);(2)h4

126
[

σ(0);(0)
]7 +

π5σ(3);(0)h4

15
[

σ(0);(0)
]5 − 2π3

[

σ(1);(0)
]5

h2

[

σ(0);(0)
]7

+
7π5σ(0);(2)

[

σ(1);(0)
]3

h2

3
[

σ(0);(0)
]8 − 2π7

[

σ(0);(2)
]2[

σ(1);(0)
]

h2

9
[

σ(0);(0)
]9

+
π7σ(0);(4)

[

σ(1);(0)
]

h2

60
[

σ(0);(0)
]8 − π5

[

σ(1);(0)
]2

σ(1);(2)h2

[

σ(0);(0)
]7

+
π7σ(0);(2)σ(1);(2)h2

18
[

σ(0);(0)
]8 − π7

[

σ(1);(4)
]

h2

420
[

σ(0);(0)
]7 −

−4π3
[

σ(1);(0)
]2

σ(3);(0)h2

[

σ(0);(0)
]5

+
π5σ(0);(2)σ(3);(0)h2

3
[

σ(0);(0)
]6 − π5

[

σ(3);(2)
]

h2

15
[

σ(0);(0)
]5

+
2π3
[

σ(1);(0)
]

σ(4);(0)h2

[

σ(0);(0)
]4 − 2π3

[

σ(5);(0)
]

h2

3
[

σ(0);(0)
]3 . (5.29)

This implies that for f3(g), . . . , f8(g) we can give the exact (i.e. valid ∀ g) expressions:

f3(g)

2
√

2g
=

1

6
π3 1
[

σ(0);(0)
]2 S̃

(1)
1 (g) , (5.30)

f4(g)

2
√

2g
= −1

3
π3 σ(1);(0)

[

σ(0);(0)
]3 S̃

(1)
1 (g) , (5.31)
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f5(g)

2
√

2g
= − π5

120
[

σ(0);(0)
]4 S̃

(2)
1 (g) +

1

2

π3
[

σ(1);(0)
]2

[

σ(0);(0)
]4 S̃

(1)
1 (g) − π5σ(0);(2)

30
[

σ(0);(0)
]5 S̃

(1)
1 (g) , (5.32)

f6(g)

2
√

2g
=

π5σ(1);(0)

30
[

σ(0);(0)
]5 S̃

(2)
1 (g) +

[

−1

3

π3σ(3);(0)

[

σ(0);(0)
]3 (5.33)

+
1

6

π5σ(1);(0)σ(0);(2)

[

σ(0);(0)
]6 − 2

3

π3
[

σ(1);(0)
]3

[

σ(0);(0)
]5 − 1

30

π5σ(1);(2)

[

σ(0);(0)
]5

]

S̃
(1)
1 (g) ,

f7(g)

2
√

2g
=

π7

5040
[

σ(0);(0)
]6 S̃

(3)
1 (g) +

[

−π5
[

σ(1);(0)
]2

12
[

σ(0);(0)
]6 +

π7σ(0);(2)

252
[

σ(0);(0)
]7

]

S̃
(2)
1 (g) + (5.34)

+

[

5π3
[

σ(1);(0)
]4

6
[

σ(0);(0)
]6 +

π7
[

σ(0);(2)
]2

72
[

σ(0);(0)
]8 − π5σ(0);(2)

[

σ(1);(0)
]2

2
[

σ(0);(0)
]7 − π7σ(0);(4)

840
[

σ(0);(0)
]7

+
π5
[

σ(1);(0)]σ(1);(2)

6
[

σ(0);(0)
]6 +

π3
[

σ(1);(0)]σ(3);(0)

[

σ(0);(0)
]4 − π3σ(4);(0)

3
[

σ(0);(0)
]3

]

S̃
(1)
1 (g) ,

f8(g)

2
√

2g
= − π7

[

σ(1);(0)]

840
[

σ(0);(0)
]7 S̃

(3)
1 (g)+

[

π5
[

σ(1);(0)
]3

6
[

σ(0);(0)
]7 −π7σ(0);(2)

[

σ(1);(0)]

36
[

σ(0);(0)
]8 +

π7σ(1);(2)

252
[

σ(0);(0)
]7 (5.35)

+
π5σ(3);(0)

30
[

σ(0);(0)
]5

]

S̃
(2)
1 (g) +

[

−π3
[

σ(1);(0)
]5

[

σ(0);(0)
]7 +

7π5σ(0);(2)
[

σ(1);(0)
]3

6
[

σ(0);(0)
]8

−π7
[

σ(0);(2)
]2[

σ(1);(0)]

9
[

σ(0);(0)
]9 +

π7σ(0);(4)
[

σ(1);(0)]

120
[

σ(0);(0)
]8 − π5

[

σ(1);(0)
]2

σ(1);(2)

2
[

σ(0);(0)
]7

+
π7σ(0);(2)σ(1);(2)

36
[

σ(0);(0)
]8 − 2π3

[

σ(1);(0)
]2

σ(3);(0)

[

σ(0);(0)
]5 +

π5σ(0);(2)σ(3);(0)

6
[

σ(0);(0)
]6

− π5
[

σ(3);(2)]

30
[

σ(0);(0)
]5 +

π3
[

σ(1);(0)]σ(4);(0)

[

σ(0);(0)
]4 − π7

[

σ(1);(4)]

840
[

σ(0);(0)
]7 − π3

[

σ(5);(0)]

3
[

σ(0);(0)
]3

]

S̃
(1)
1 (g) ,

In the limit g → ∞, the quantity σ(n);(s) for n ≥ 1 can be computed for n = 1 by

using (5.14) and for n ≥ 2 by solving together the recursive equations (5.16) and (4.28).

In particular we have

σ(1);(0) = − ln 2 − π

2
+ O

(

e
− 2πg√

2

)

, σ(1);(2) =
3ζ(3) + π3

8
+ O

(

e
− 2πg√

2

)

,

σ(3);(0) =
π2

6
[

σ(0);(0)
]2 σ(1);(2) , σ(1);(4) = − 5

32

(

π5 + 9ζ(5)
)

+ O
(

e
− 2πg√

2

)

,

σ(3);(2) =
π2

6
[

σ(0);(0)
]2 σ(1);(4) , σ(4);(0) = −π2 σ(1);(0)σ(1);(2)

3
[

σ(0);(0)
]3 ,

σ(5);(0) =
π2σ(1);(2)

[

σ(1);(0)
]2

2
[

σ(0);(0)
]4 − π4σ(0);(2)σ(1);(2)

30
[

σ(0);(0)
]5 +

π4
[

σ(1);(4)
]

120
[

σ(0);(0)
]4 , (5.36)

where for σ(0);(2k) we have to use the strong coupling expressions (5.2). These formulæ,

together with the values at strong coupling of σ(0);(s) and S̃
(k)
1 (g) (5.2), allow to obtain for
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f3(g), . . . , f8(g) the following (leading) values as g → ∞,

f3(g) =
π2

24m(g)
+ O

(

e
− πg√

2

)

, (5.37)

f4(g) = − π2

12[m(g)]2
S1 + O(1) , (5.38)

f5(g) = − π4

640[m(g)]3
+

π2

8[m(g)]3
[S1]

2 + O
(

e
πg√

2

)

, (5.39)

f6(g) =
π4

[m(g)]4

(S3

90
− [S1]

3

6π2
+

S1

120

)

+ O
(

e
2πg√

2

)

, (5.40)

f7(g) =
π6

7182[m(g)]5
− 5π4[S1]

2

192[m(g)]5
+

5π2[S1]
4

24[m(g)]5
− π4S1S3

18[m(g)]5
+ . . . , (5.41)

f8(g) = − π6S1

840[m(g)]6
+

π4[S1]
3

16[m(g)]6
− π2[S1]

5

4[m(g)]6
− π6S3

560[m(g)]6
+

π4S2
1S3

6[m(g)]6
−

− π6S5

280[m(g)]6
+ . . . , (5.42)

where we used the compact notations:

S2s+1 =
1

π2s+1

∞
∑

n=0

(−1)n

[

1
(

n + 1
2

)2s+1 +
1

(n + 1)2s+1

]

. (5.43)

For instance, we have

S1 =
1

π
ln 2 +

1

2
, S3 =

1

4π3

[

3ζ(3) + π3
]

, S5 =
5

48π5

[

9ζ(5) + π5
]

. (5.44)

After a lengthy but straightforward calculation it is possible to show that such expressions

agree with the corresponding formulæ12 computed in the framework of the O(6) NLSM,

i.e. the coefficients 2n−1Ωn(g) given by the general formulae of [22].

It emerges from our analysis that at the leading strong coupling order the generalised

scaling functions fn(g) (and then f(g, j)) are all dominated by the O(6) NLSM energy

density contribution. This implies that they are all given by a suitable power of the (unique)

NLSM mass-gap m(g), i.e. fn(g) = an[m(g)]2−n + . . . where the an can be computed within

the NLSM [22] or the formulæ (5.37)–(5.42). This fact motivates the introduction of the

following quantities or “masses”

mn(g) ≡
(

an

fn(g)

)
1

n−2

, (5.45)

which all tend to the unique NLSM mass-gap m(g). Beyond the leading order and indeed

for all g, the generalised scaling functions fn(g) can be deduced by putting together all the

relevant results for S̃
(k)
1 (g) and σ(n);(s), and consequently the “masses” above expand as

mn(g) = m(g) + pn(g) gδn e
− 3πg√

2 + . . . , (5.46)

12In order to perform such a check, we have explicitly calculated Ωn up to n = 8 according to the

expressions found in [22].
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where the pn(g) = p0
n +O(1/g) can be expressed as (asymptotic) expansions in the variable

1/g, the δn are some constants, and the dots stand for higher order non-analytic corrections.

These expansions for the masses mn(g) are of particular interest, because at the order

O
(

e
− πg√

2

)

all these mn(g) reduce to the unique NLSM mass-gap: this is a convergence

phenomenon that agrees with the simplification of the string dynamics observed in [11]. In

other words, all these masses converge to one, the mass gap of the O(6) NLSM, because, as

proposed in [11] within the dual string description, in the scaling (1.4) the strong coupling

limit g ≫ j of the quantity f(g, j) + j must coincide with the energy density of the

O(6) NLSM. Moreover, the unique mass parameter in the O(6) NLSM theory is the mass

gap m(g).

Furthermore, it is interesting to notice that all the mn(g) share the same next-to-

leading exponential decay of order O
(

e
− 3πg√

2

)

, being the difference between these masses

encapsulated in the functions pn(g). In principle, the exponents δn would be different as

well. Yet, in the next section we will perform a numerical analysis of the next to leading

order corrections for various densities and reduced scaling functions and will gain some

evidence for the equality of these exponents.

5.2 Numerical evaluation of the next to leading corrections

In order to check the results presented in the previous sections we can numerically estimate

(see appendix C for details on the numerics) the deviations from the leading behaviour at

strong coupling for various quantities:

α1(g) = f1(g) + 1 , α2(g) = −σ(0);(0)

π
, α3(g) = −4

σ(0);(2)

π3
, (5.47)

α4(g) =
8

π

[√
2gS̃

(1)
1

]

, α5(g) = −16

π3

[√
2gS̃

(2)
1

]

. (5.48)

As we showed in the appendix A, all of them, indeed, at strong coupling approach the O(6)

mass gap m(g), up to terms O
(

e
− 3πg√

2

)

, i.e.

αi(g) = m(g) + ǫi g
γi e

− 3πg√
2 + . . . (5.49)

The first step of the numerical analysis concerns the leading term m(g). In particular

we are able to give a quite precise estimate of the coefficients k1, k2 appearing in (3.13):

m(g) = k g1/4

(

1 +
k1

g
+

k2

g2
+ . . .

)

e
− πg√

2 , k =
25/8π1/4

Γ(5/4)
. (5.50)

The analysis of the data at our disposal gives access to the quantities k1, k2, whose

best fit estimates are

k1 = −0.0164 ± 0.0005, k2 = −0.0026 ± 0.0004. (5.51)

As a by product, we are also able to check that the previous estimate is the same for all

the αi’s (within the error bars). As matter of facts, all the corrections in powers of 1/g

ought to be the same for all the αi(g), as shown (analytically) in appendix A.
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δi,j 1 2 3 4 5

1 0 -0.82(1) -5.72(3) 1.64(2) 16.3(2)

2 0.82(1) 0 -4.96(2) 2.46(2) 17.2(2)

3 5.72(3) 4.96(2) 0 7.35(2) 22.04(2)

4 -1.64(2) -2.46(2) -7.35(2) 0 14.7(2)

5 -16.3(2) -17.2(2) -22.04(2) -14.7(2) 0

Table 1. Values of the amplitudes δi,j . The index i runs along the rows, and the index j runs

along the columns.

The next step is the evaluation study of the next-to-leading terms O(e
− 3πg√

2 ). The

exponentially small nature of such contributions forces us to study the differences ∆ij(g) =

αi(g) − αj(g), i < j, in order to get rid of the leading term which would overshadow the

sub-leading terms. With the usual best fit procedure, we have been able to verify that all

the ∆ij(g) actually share the same pre-exponential behaviour, taking the following form

∆ij(g) = δi,jk
3g−1/4e

− 3πg√
2 + . . . (5.52)

but the amplitudes δi,j turn out to be different, reflecting the fact that the αi are leaving

the O(6) limit following different trajectories. We put a particular care in the check of

the uniqueness of the pre-exponential factor, because such a fact strongly suggests the

uniqueness of the exponents γi for all the αi(g) considered here, i.e γi = −1/4, ∀ i.

As a consistency check upon the numerical amplitudes δi,j we verified numerically that

the following identity

δi,j + δj,k = δi,k (5.53)

actually holds for all i, j, k. We found that it is verified within the numerical precision.

The amplitudes are collected in table 1.

6 Summary and outlook

The aim of this article was the study of the functions fn(g) appearing in the expansion

γ(g, s, L) = ln s
∞
∑

n=0

fn(g)jn + . . . , (6.1)

of the lowest anomalous dimension of twist operators of N = 4 SYM for fixed j in the

limit (1.4). Much help comes from the extension (2.17) of the Kotikov-Lipatov relation [23]

γ(g, s, L) =
1

π
lim
k→0

σ̂H(k) + . . . , (6.2)

equating the leading ln s contribution of the anomalous dimension to the Fourier transform

of the higher than one loop density of roots and holes in zero, σ̂H(0). The function σ̂H(k)
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satisfies the equation (2.11), supplemented by the one-loop equation (2.5) and by condi-

tions (2.12) on the one-loop and all-loops separators, called c0 and c, respectively. Usefully,

the crucial quantities c and σ̂H(k) expand in powers of j:

c =

∞
∑

n=1

c(n)jn + . . . , σ̂H(k) =

[ ∞
∑

n=0

σ̂
(n)
H (k)jn

]

ln s + . . . . (6.3)

As a consequence, the auxiliary function S(k), defined in (3.14), enjoys the same kind

of expansion, (3.15). Slicing (2.11) in powers of j furnishes equation (3.16) for all the

components S(n)(k). Upon introducing the Neumann modes S
(n)
r (g) (3.17), we constrain

them by the linear infinite system (3.19),

S
(n)
2p (g) = A

(n)
2p (g) − 4p

∞
∑

m=1

Z2p,2m(g)S
(n)
2m(g) + 4p

∞
∑

m=1

Z2p,2m−1(g)S
(n)
2m−1(g) ,

S
(n)
2p−1(g) = A

(n)
2p−1(g) − 2(2p − 1)

∞
∑

m=1

Z2p−1,2m(g)S
(n)
2m(g) − (6.4)

−2(2p − 1)

∞
∑

m=1

Z2p−1,2m−1(g)S
(n)
2m−1(g) ,

where the infinite matrix Zn,m(g) is given in (3.4) and the ’forcing terms’ A
(n)
r (g) in (3.20).

Crucially, (6.2) entails how easily the first mode gives the n-th generalised scaling function

fn(g) =
√

2gS
(n)
1 (g) . (6.5)

Manipulations in section 4 show that the solution to the above system can be expressed as

in (4.23). All the ingredients of this expression are detailed, in the same section, as stem-

ming out from two sources: some ingredients (σ(0);(s) (4.37), S̃
(k)
1 (g) (4.35), S

(1)
1 (g) (4.36))

from the solution of the BES equation, the others (c(m), 1 ≤ m ≤ n − 2 ; σ(n′);(s),

1 ≤ n′ ≤ n − 3) from (4.28) and from the solutions to the systems (3.9) and (4.24) for

S
(1)
r (g) and for the reduced coefficients S̃

(k)
r (g), respectively. Detailed inspection of (4.28)

reveals that c(m) depends on σ(n′);(s), with n′ ≤ m − 1. This means that S
(n)
r (g) (and, in

particular, fn(g) =
√

2gS
(n)
1 (g)) depends on data coming from the BES equation and from

the knowledge of S
(n′)
r (g), with n′ ≤ n − 3. This implies that a recursive procedure for

the determination of the fn(g) has been eventually set down. We explicitly discuss and

solve this recursive procedure at large g (section 5). An ingredient (and result in itself) is

the asymptotic solution (5.8), (5.9) to the ’reduced’ system (4.24). Together with results

concerning the BES equation (reported in appendix A) and S
(1)
r (g) [19], this eventually has

allowed us to compute the leading (non-perturbative) orders of the generalised scaling func-

tions; for definiteness’ sake we constrained ourselves to the first eight ones (5.37), (5.42).

A leading strong coupling g ≫ j, our results match the simple calculations in the

thermodynamic limit framework of the O(6) nonlinear sigma model [22], thus confirming

the Alday-Maldacena proposal [11] on the presence of the O(6) nonlinear sigma model in

the sl(2) sector of N = 4 SYM [20]. Eventually, we have also detailed the deviations of
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the exact scaling functions fn(g) from their O(6) values. For this purpose, we have found

useful to parametrise the various fn(g) by quantities (’masses’) all converging to the O(6)

NLSM mass gap m(g) at leading order and we have computed their different corrections.

This was also better illustrated by numerical evaluations of the subleading corrections

to (5.37)–(5.42) (subsection 5.2).

For what concerns future work, several directions are possible. First, as we stated in

section 2, the equations (2.5), (2.11) are suitable for the study of the subleading correction

f (0)(g, j) to the anomalous dimension (1.7) (in the regime (1.4)). This will be the subject

of a future publication.

Then, one has to say that in the sl(2) sector of N = 4 SYM other regimes — e.g. large

j both at strong and at weak coupling [17, 26] — are relevant for comparisons with pure

string theory results. In this respect, the limit s, L → ∞, g → ∞, l = L/(g ln s) fixed —

the so-called ’semiclassical scaling limit’ — has been widely studied [17]. Application of

our equations and techniques to this case is a possible future direction of investigation.

Finally, one has to mention the new line of research related to the recently discovered

duality between N = 6 super Chern-Simons (SCS) theory with U(N) × U(N) gauge group

at level k and superstring theory in the AdS4 × CP3 background, when N is large and

the ’t Hooft coupling λ = N/k is kept fixed [27]. Integrability on the gauge side [28, 29]

and on the string side of the duality [30] was shown. Bethe Ansatz-like equations were

proposed [31] for the SCS theory and tested in various ways [32]. It could be surely of

interest to apply the techniques discussed in this paper also to this new field of activity.
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A Non-analytic terms at strong coupling

The aim of this subsection is the explicit computation at large g of the leading non-

analytic13 contributions to the equations (4.35) by using the techniques developed in [20].

In particular, we will calculate the large g behaviour of the integrals,

B2k−1(g) =

∫ +∞

0
dt

t2k−1

sinh t/2

[

σ
(0)
+

(√
2gt
)

− σ
(0)
−
(√

2gt
)]

,

C2k(g) =

∫ +∞

0
dt

t2k

sinh t/2

[

σ
(0)
+

(√
2gt
)

+ σ
(0)
−
(√

2gt
)]

.

13These terms are not taken into account by the asymptotic expansion, because of their exponential

nature (cf. section 5). In this sense they are also called non-perturbative or non-asymptotic.
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First of all, we make use of the BKK transformation [15, 20],

2σ
(0)
± (t) =

(

1 − 1

cosh t√
2g

)

Σ
(0)
± (t) ± tanh

t√
2g

Σ
(0)
∓ (t) , (A.1)

in order to rewrite the integrals as

B2k−1(g)=−
∫ +∞

0

dt

t

(

t√
2g

)2k
[

sinh t
2
√

2g

cosh t√
2g

(

Σ
(0)
− (t)−Σ

(0)
+ (t)

)

−
cosh t

2
√

2g

cosh t√
2g

(

Σ
(0)
− (t)+Σ

(0)
+ (t)

)

]

C2k(g)=

∫ +∞

0

dt

t

(

t√
2g

)2k
[

cosh t
2
√

2g

cosh t√
2g

(

Σ
(0)
− (t)−Σ

(0)
+ (t)

)

+
sinh t

2
√

2g

cosh t√
2g

(

Σ
(0)
− (t)+Σ

(0)
+ (t)

)

]

.

The BES equation can be rewritten in terms of the functions Σ
(0)
± [20], with |u| < 1

∫ +∞

0
dt sin(ut)

[

Σ
(0)
− (t) + Σ

(0)
+ (t)

]

= 0 ,

(A.2)
∫ +∞

0
dt cos(ut)

[

Σ
(0)
− (t) − Σ

(0)
+ (t)

]

= 2
(

2
√

2g
)

and the ratios of hyperbolic functions admit a useful integral representation

t2k−1
sinh t

2
√

2g

cosh t√
2g

= (−1)k+1 g

∫ +∞

−∞
du cos(ut)

d2k−1

du2k−1

[

sinh gπu√
2

cosh
√

2gπu

]

,

t2k−1
cosh t

2
√

2g

cosh t√
2g

= (−1)k g

∫ +∞

−∞
du sin(ut)

d2k−1

du2k−1

[

cosh gπu√
2

cosh
√

2gπu

]

,

t2k
sinh t

2
√

2g

cosh t√
2g

= (−1)k g

∫ +∞

−∞
du sin(ut)

d2k

du2k

[

sinh gπu√
2

cosh
√

2gπu

]

,

t2k
cosh t

2
√

2g

cosh t√
2g

= (−1)k g

∫ +∞

−∞
du cos(ut)

d2k

du2k

[

cosh gπu√
2

cosh
√

2gπu

]

.

Plugging them into the integrals B2k−1, C2k we obtain

B2k−1(g) = (−1)kg

(

1√
2g

)2k ∫ +∞

−∞
du

[

∫ +∞

0
dt cos(ut)

d2k−1

du2k−1

[

sinh gπu√
2

cosh
√

2gπu

]

×
(

Σ
(0)
− (t)−Σ

(0)
+ (t)

)

+

∫ +∞

0
dt sin(ut)

d2k−1

du2k−1

[

cosh gπu√
2

cosh
√

2gπu

]

(

Σ
(0)
− (t)+Σ

(0)
+ (t)

)

]

,

C2k(g) = (−1)kg

(

1√
2g

)2k+1∫ +∞

−∞
du

[

∫ ∞

0
dt cos(ut)

d2k

du2k

[

cosh gπu√
2

cosh
√

2gπu

]

×
(

Σ
(0)
− (t)−Σ

(0)
+ (t)

)

+

∫ +∞

0
dt sin(ut)

d2k

du2k

[

sinh gπu√
2

cosh
√

2gπu

]

(

Σ
(0)
− (t)+Σ

(0)
+ (t)

)

]

.
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Let us evaluate them in the large g limit. The strategy is to split the integral over u

in two intervals |u| < 1 and |u| > 1 in order to use the constraints (A.2). The former gives,

together with the use of such constraints:
∫ 1

−1
du

d2k−1

du2k−1

[

sinh gπu√
2

cosh
√

2gπu

]

∫ +∞

0
dt cos(ut)

(

Σ
(0)
− (t) − Σ

(0)
+ (t)

)

=

2
(

2
√

2g
)

∫ 1

−1
du

d2k−1

du2k−1

[

sinh gπu√
2

cosh
√

2gπu

]

,

∫ 1

−1
du

d2k−1

du2k−1

[

cosh gπu√
2

cosh
√

2gπu

]

∫ +∞

0
dt sin(ut)

(

Σ
(0)
− (t) + Σ

(0)
+ (t)

)

= 0 ,

∫ 1

−1
du

d2k

du2k

[

cosh gπu√
2

cosh
√

2gπu

]

∫ +∞

0
dt cos(ut)

(

Σ
(0)
− (t) − Σ

(0)
+ (t)

)

=

2
(

2
√

2g
)

∫ 1

−1
du

d2k

du2k

[

cosh gπu√
2

cosh
√

2gπu

]

,

∫ 1

−1
du

d2k

du2k

[

sinh gπu√
2

cosh
√

2gπu

]

∫ +∞

0
dt sin(ut)

(

Σ
(0)
− (t) + Σ

(0)
+ (t)

)

= 0 .

Since we are interested in the large g behaviour, we can perform the previous integrals

by rewriting them as the difference of the integrals with support over (−∞,+∞) and

(−∞,−1), (1,+∞), and finally taking the leading exponential in the integrands, so we will

have for n > 0 (we will use a single index n because at this order there is no distinction

between even and odd indexes):

− 4(2
√

2g)

∫ +∞

1
du

dn

dun
e
− gπu√

2 = 8
√

2g

(

− πg√
2

)n−1

e
− πg√

2 + O
(

e
− 3πg√

2

)

.

The case with n = 0 needs to be treated separately, because we also have to take into

account the contribution of the integral over (−∞,+∞):

∫ 1

−1
du

[

cosh gπu√
2

cosh
√

2gπu

]

=

∫ +∞

−∞
du

[

cosh gπu√
2

cosh
√

2gπu

]

− 2

∫ +∞

1
du

[

cosh gπu√
2

cosh
√

2gπu

]

.

We end up with

2
(

2
√

2g
)

∫ 1

−1
du

[

cosh gπu√
2

cosh
√

2gπu

]

= 4
√

2 − 8
√

2g

(√
2

gπ

)

e
− πg√

2 + O
(

e
− 3πg√

2

)

. (A.3)

We stress that the above integrals have the same structure for any n only at leading order

for large g. Next to leading orders will differ because of the different form of the integrands.

It is possible to show that, taking the leading exponential only, the integrals over

|u| > 1 take the form

2

(

− πg√
2

)n ∫ +∞

1
du e

−πgu√
2

[∫ +∞

0
dt cos(ut)

(

Σ
(0)
− (t) − Σ

(0)
+ (t)

)

+

∫ +∞

0
dt sin(ut)

(

Σ
(0)
− (t) + Σ

(0)
+ (t)

)

]

,
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which is accurate up to O
(

e
− 3πg√

2

)

terms. The integral was estimated in [20], and taking

into account the difference with the notations of that paper,14 we have

∫ +∞

1
du e

− gπu√
2

[
∫ +∞

0
dt cos(ut)

(

Σ
(0)
− (t)−Σ

(0)
+ (t)

)

+

∫ +∞

0
dt sin(ut)

(

Σ
(0)
− (t)+Σ

(0)
+ (t)

)

]

=

= − π√
2

m(g) +
8

π
e
− πg√

2 + O
(

e
− 3πg√

2

)

, (A.5)

where m(g) is defined as the part of the integral (A.5) proportional to e
− πg√

2 (cf. also [33]):

m(g) = k g1/4e
− πg√

2

[

1 +

∞
∑

n=1

kn

gn

]

, k =
25/8π1/4

Γ(5/4)
. (A.6)

It is interesting to notice that the O(1/g) in the previous equation stands for power-like

corrections which in can be computed by inspecting the sub-leading terms of the l.h.s.

of (A.5).

If we put everything together we have,

B2k−1(g) = (−1)k

[

16
√

2

π2

(π

2

)2k
e
− πg√

2 − 2
√

2

π

(π

2

)2k
(

− π√
2

m(g)+
8

π
e
− πg√

2

)

]

+O
(

e
− 3πg√

2

)

,

C2k(g) = (−1)k
[

−4
√

2
(π

2

)2k−1
e
− πg√

2 +
√

2
(π

2

)2k
(

− π√
2

m(g)+
8

π
e
− πg√

2

)]

+O
(

e
− 3πg√

2

)

,

C0(g) = −8
√

2

π
e
− πg√

2 +4+
√

2

(

− π√
2

m(g)+
8

π
e
− πg√

2

)

+O
(

e
− 3πg√

2

)

.

We notice that the first and the last terms always cancel, hence we have eventually:

B2k−1(g) = (−1)k
(π

2

)2k
2m(g) + O

(

e
− 3πg√

2

)

,

C2k(g) = (−1)k+1
(π

2

)2k
π m(g) + O

(

e
− 3πg√

2

)

, k > 0 ,

C0(g) = 4 − π m(g) + O
(

e
− 3πg√

2

)

= σ
(0);(0)
H .

Therefore, we end up with the following estimates at large g:

√
2gS̃

(k)
1 (g) = − 1

4π
B2k−1(g) =

(−1)k+1

4π

(π

2

)2k
2m(g) + O

(

e
− 3πg√

2

)

,

σ
(0);(2k)
H = i−2kC2k(g) = −

(π

2

)2k
π m(g) + O

(

e
− 3πg√

2

)

, k > 0 , (A.7)

σ
(0);(0)
H = C0(g) = 4 − π m(g) + O

(

e
− 3πg√

2

)

.

14It is easy to work out the following relations between our g, Σ
(0)
± and the same quantities gBK , Γ

(0)
± in

the paper [20]

gBK =
g√
2
, Γ

(0)
± =

Σ
(0)
±

2
√

2g
. (A.4)

– 35 –



J
H
E
P
1
1
(
2
0
0
9
)
0
3
7

It is important to point out that, at this level of accuracy, eq. (A.5) is the same for all the

B, C. As a consequence, our estimates (A.7), together with the recursion relations (4.28)

and (5.16) ensure that m(g) is the same for all the fn(g), n > 0.

We conclude with few words on the coefficient relevant for the computation of f1(g).

Starting from (4.36) and using the BKK trasformation (A.1), we can obtain

√
2gS

(1)
1 (g) = −

∫ +∞

0

dt

2t

[

sinh t
2
√

2g

cosh t√
2g

(

Σ
(0)
− (t) − Σ

(0)
+ (t)

)

+

(

1 −
cosh t

2
√

2g

cosh t√
2g

)

(

Σ
(0)
− (t) + Σ

(0)
+ (t)

)

]

, (A.8)

which, after the use of the map (A.4), coincides with (53) of [20]. Therefore, the strong

coupling analysis can be performed along the lines depicted above.

B Some symbolic manipulations with Mathematica
R©

Equations (5.30)–(5.35) in the main text can be derived using Mathematica R© by means

of a direct implementation of equations (4.21), (4.28). We begin with some preliminary

definitions which are useful for the calculation

Clear[Combi]

Combi[k_, l_]:= Combi[k, l] = Block[{fin, fin1, enf, t, ind, w, j, en},

fin = {Table[0, {w, 1, k - l + 1}]}; fin1 = {};

Do[Do[Do[j[ind] = fin[[t, ind]], {ind, 1, k - l + 1}];

Do[{fin = Append[fin, Table[j[f], {f, 1, k - l + 1}]]};

If[(Sum[j[q], {q, 1, k - l + 1}] == l) && (Sum[q j[q], {q, 1, k - l + 1}] == k),

fin1 = Append[fin1, Table[j[f], {f, 1, k - l + 1}]]],

{j[ind], 0, Min[l, IntegerPart[k/ind]]}],

{t, 1, Length[fin]}], {ind, 1, k - l + 1}]; en = Union[fin, fin];Union[fin1, fin1]]

Clear[Prod]

Prod[c_, j_, k_, l_]:=Product[(c[p])^j[p]/((j[p])!), {p, 1, k - l + 1}]

Clear[xi]

xi[n_]:= (I)^(n + 1) ((-1)^(n) - 1)/2

Then, we introduce equation (4.21)

Clear[gamma]

gamma[k_, l_, n_, c_, h_]:= gamma[k, l, n, c, h] = Block[{j, mm},

(Sum[(-I)^t Binomial[l-1, t] (((-1)^(t)+1)/2) \[Sigma][n-k, t] h^(l-2-t), {t,0,l-2}])

Sum[Clear[j]; Table[{j[p] = Combi[k, l][[ss, p]]}, {p, 1, k - l + 1}];

Prod[c, j, k, l], {ss, 1, Length[Combi[k, l]]}] // Expand]
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and the building block of the recursion relation (4.28) for the coefficients cn

Clear[ConstIter]

ConstIter[k_, l_, n_, c_]:= ConstIter[k, l, n, c] = Block[{j, mm},

((I)^(-l+1) \[Sigma][n-k,l-1]) Sum[Clear[j];

Table[{j[p] = Combi[k,l][[ss,p]]}, {p,1,k-l+1}];

Prod[c, j, k, l] , {ss, 1, Length[Combi[k, l]]}] // Expand]

To compute the generalised scaling functions, we begin with

\[Sigma][k_, s_]:= 0 /; EvenQ[s] == False

\[Sigma][2, s_]:= 0

c[1] = -Pi/(\[Sigma][0, 0]);

nmax=8;

where the first two lines define some useful properties of the densities σ(k),(s), the third line

is the initial condition for the recursion relation (4.28), and the last one sets the maximum

number of generalised scaling functions that we want to compute. Then, the coefficients

cn are expressed in terms of the densities σ(k),(s) as follows

Table[c[nn] = Expand[-(Sum[xi[1] ConstIter[k,1,nn,c], {k,1,nn-1}]

+ Sum[ Sum[xi[l] ConstIter[k,l,nn,c], {l,2,k}], {k,1,nn}])/(\[Sigma][0,0])],{nn,2,nmax-2}];

and finally, the ratios fn(g)

2
√

2g
with n = 3, . . . , nmax are obtained by means of

Table[Print[f[nn] = Sum[Coefficient[Expand[Sum[ Sum[xi[l] gamma[k,l,nn,c,h], {l,1,k}],

{k, 1, nn}]],h,nt] St[(nt+1)/2], {nt,1,nn,2}]], {nn,3,nmax}];

whose output can be readily compared with equations (5.30)–(5.35) .

C Numerics

In summary, the main results of this paper may be considered the equations (5.30)–(5.35)

and the general recursive procedure which has led to them. They provide a compact

systematic description of the (first eight) scaling functions fn(g) at any g, not only in the

weak, but also in the strong coupling regime. In particular, they are naturally suitable for

numerical computations, which will be the topic of this appendix.

As a matter of fact, the building blocks of expressions (5.30)–(5.35) are the components

S̃
(r)
1 (g) of the “reduced systems” (4.24), and the densities σ(r);(s) (we recall that with this

notation we mean the s-th derivative of the r-th density computed at u = 0). Their

numerical computation can be achieved with good precision in a broad range of the coupling

constant g, i.e. g ∈ [0, 15], allowing us to test the weak and strong coupling regimes, but

also giving numerical information about the transition regime.
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The numerical technique is that developed in the first reference of [14]. The aim

is to solve the linear systems (4.24) for the modes S̃
(r)
m (g), by truncating the Neumann

expansion at a given Bessel (function) order L.15 The structure of the BES kernel (given

by the (infinite) matrix Zr,s(g) in the linear system of Bessel functions [14]) is such that

the bigger the L, the greater the accuracy of the numerical results.

Inspired by results in [14], we can put down systems (4.24) in a matrix form, which is

more profitable in a numerical perspective:

S̃(r)
p (g) = b(r)

p (g) −
∞
∑

m=1

(

K(m)
pm (g) + 2K(c)

pm(g)
)

S̃(r)
m (g) , (C.1)

where

K(m)
pm (g) = 2(NZ)pm, K(m)

pm (g) = 4(PNZQNZ)pm (C.2)

b(r)(g) = (N + 4PNZQN)
(

I
(r)
)T

,

with

N = diag(1, 2, 3, . . . ), P = diag(0, 1, 0, 1 . . . ), Q = diag(1, 0, 1, 0 . . . ),

I
(r) = (I

(r)
1 , I

(r)
2 , I

(r)
3 , . . . ) . (C.3)

The previous equation is remarkably similar to the one coming from the BES equation and

numerically solved in [14]: the matrix kernel turns out to be explicitly the same, the only

difference being in the forcing term b
(r)
p (g) that now involves the integrals I

(r)
p (4.25). Of

course, the solution can be written as

S̃(r)(g) =
(

I + K(m) + 2K(c)
)−1

b(r)(g) , (C.4)

where I is the identity matrix and, thus, in this way it can be efficiently approximated by

truncating the vector solution at length L in a numerical analysis.

From a quantitative point of view, the physically interesting window of values of the

coupling constant is about g ∈ [0, 15], where both the weak and strong coupling regimes

can be studied with a satisfactory precision already with a truncation at L = 70.

This fact implies that the numerical effort is quite small, and allows the use of

Mathematica R© as the most suitable numerical tool for the solution of the linear problem.

As said above, the matrix form (C.4) is particularly easy to be translated in the following

Mathematica R© code:

II[L_]:= II[L] = IdentityMatrix[L]

NN[L_]:= NN[L] = DiagonalMatrix[Table[i, {i, 1, L}]];

QQ[L_]:= QQ[L] = DiagonalMatrix[Table[(1-(-1)^i)/2, {i, 1, L}]];

PP[L_]:= PP[L] = DiagonalMatrix[Table[(1+(-1)^i)/2, {i, 1, L}]];

15This letter does not mean, in this appendix only, the chain length/angular momentum (cf. Introduction)

and thus is a little abuse of notation.
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Km[L_,g_]:= Km[L,g] = 2 NN[L].ZZ[L,g];

Kc[L_,g_]:= Kc[L,g] = 4 PP[L].NN[L].ZZ[L, g].QQ[L].NN[L].ZZ[L,g];

b[r_,L_,g_]:= b[r,L,g] = (NN[L] + 4 PP[L].NN[L].ZZ[L, g].QQ[L].NN[L]).Integ[r,L,g];

Mat[L_,g_]:= Mat[L, g] = II[L] + Km[L,g] + 2 Kc[L,g];

InvMat[L_,g_]:= InvMat[L,g] = Inverse[Mat[L,g]];

tS[L_,g_]:= tS[L,g] = Inverse[Mat[L,g]].b[r,L,g];

The only external input needed is the evaluation of Z and I
(r) (encoded in the ar-

rays ZZ[L,g] and Integ[r,L, g]), whose entries are defined as integrals in (3.4)

and (4.25), respectively. Even though these low values of L and g would permit to deal

with a numerical integration under Mathematica R©, it is far more efficient to use a standard

numerical integrator programmed in a C language code. The output of this program

is then stored once forever in arrays that can be loaded in a Mathematica R© notebook

when necessary. Then, the solution of the truncated linear system is stored in the table

NeumannModes, where we have one array tS[r,L,g] for each value of g.

The procedure described before gives the core of the numerical computation. At this

stage, we are in the position to extract the numerical estimates for S̃
(r)
1 (g), and the densities

σ
(r);(s)
H . The former is just the first component in the numerical array above for the solution

S̃(r)(g). According to (5.15), the latter is given by an infinite sum over the components of

S(r)(g), similar to (5.12), but now the sum is truncated at L, and the integrals over the

Bessel functions are computed numerically through a C language code.16

In general, the procedure described above allows us to produce a numerical estimate of

the scaling functions fn(g), and the densities σ(r);(s) as functions of the coupling constant

in a given range. As an example of the application of the method, we provide some results

for the scaling function f3(g), and the densities σ(0);(0). Since the strong coupling regime is

of particular interest, we can focus on the numerical analysis concerning it (this was done

for the first time in [19], where we have obtained the mass gap of the O(6) NLSM from the

first scaling function f1(g)). The simplest way to achieve reliable quantitative information

is the use of the well known best fit procedure based on the “χ2” statistical test. We also

recall that

f3(g) =
π2

6
[

−4 + σ
(0);(0)
H (0)

]2 f red
3 (g) (C.5)

and hence we will study initially the reduced version f red
3 (g). As we already know that the

functional form we have to use is exponential, we begin with the following hypothesis for

the strong coupling behaviour of f red
3 (g), and σ

(0);(0)
H :

σ
(0);(0)
H (0)|fit = 4 + dfit

0 g1/4e
− π√

2
g
, (C.6)

f red
3 (g)|fit = cfit

3 g1/4e
− π√

2
g
, (C.7)

16As discussed in the main body of the text, this procedure is strictly true for σ
(r);(s)
H with r = 1, 2, and

can be used to obtain the initial values for the recursive relation (5.16) which give σ
(r);(s)
H with r > 2.
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where the constants dfit
0 , cfit

3 will be fixed by the best fit procedure. The latter has proved

to work remarkably well giving the following estimates

dfit
0 = −7.1166 ± 0.0005, (C.8)

cfit
3 = 5.5896 ± 0.0005 , (C.9)

with a χ2 ∼ 1 in the range g ∈ [3, 12], and also a very good degree of accuracy with respect

to the exact estimates (see section 5).

Following this same workflow it is possible to reproduce the analysis of subsection 5.2.
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